You need to enable JavaScript to run this app.
资源加载中...
loading...
FMZ
Home
Digest
Forums
Square
API
Forums
Quantpedia
常用机器学习与数据挖掘相关术语
常用机器学习与数据挖掘相关术语
Author:
发明者量化-小小梦
, Created: 2017-03-20 09:58:22, Updated:
常用机器学习与数据挖掘相关术语
Sampling(采样):
Simple Random Sampling(简单随机采样),
OfflineSampling(离线等可能K采样),
Online Sampling(在线等可能K采样),
Ratio-based Sampling(等比例随机采样),
Acceptance-RejectionSampling(接受-拒绝采样),
Importance Sampling(重要性采样),
MCMC(MarkovChain Monte Carlo 马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)。
Clustering(聚类):
K-Means,
K-Mediods,
二分K-Means,
FK-Means,
Canopy,
Spectral-KMeans(谱聚类),
GMM-EM(混合高斯模型-期望最大化算法解决),
K-Pototypes,CLARANS(基于划分),
BIRCH(基于层次),
CURE(基于层次),
DBSCAN(基于密度),
CLIQUE(基于密度和基于网格)。
Classification&Regression(分类&回归):
LR(Linear Regression 线性回归),
LR(LogisticRegression逻辑回归),
SR(Softmax Regression 多分类逻辑回归),
GLM(GeneralizedLinear Model 广义线性模型),
RR(Ridge Regression 岭回归/L2正则最小二乘回归),
LASSO(Least Absolute Shrinkage andSelectionator Operator L1正则最小二乘回归),
RF(随机森林),
DT(DecisionTree决策树),
GBDT(Gradient BoostingDecision Tree 梯度下降决策树),
CART(ClassificationAnd Regression Tree 分类回归树),
KNN(K-Nearest Neighbor K近邻),
SVM(Support VectorMachine),
KF(KernelFunction 核函数PolynomialKernel Function 多项式核函、
Guassian KernelFunction 高斯核函数/Radial BasisFunction RBF径向基函数、
String KernelFunction 字符串核函数)、
NB(Naive Bayes 朴素贝叶斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network 贝叶斯网络/贝叶斯信度网络/信念网络),
LDA(Linear Discriminant Analysis/FisherLinear Discriminant 线性判别分析/Fisher线性判别),
EL(Ensemble Learning集成学习Boosting,Bagging,Stacking),
AdaBoost(Adaptive Boosting 自适应增强),
MEM(MaximumEntropy Model最大熵模型)。
Effectiveness Evaluation(分类效果评估):
Confusion Matrix(混淆矩阵),
Precision(精确度),Recall(召回率),
Accuracy(准确率),F-score(F得分),
ROC Curve(ROC曲线),AUC(AUC面积),
LiftCurve(Lift曲线) ,KS Curve(KS曲线)。
PGM(Probabilistic Graphical Models概率图模型):
BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 贝叶斯网络/贝叶斯信度网络/信念网络),
MC(Markov Chain 马尔科夫链),
HMM(HiddenMarkov Model 马尔科夫模型),
MEMM(Maximum Entropy Markov Model 最大熵马尔科夫模型),
CRF(ConditionalRandom Field 条件随机场),
MRF(MarkovRandom Field 马尔科夫随机场)。
NN(Neural Network神经网络):
ANN(Artificial Neural Network 人工神经网络),
BP(Error BackPropagation 误差反向传播)。
DeepLearning
Auto-encoder(自动编码器),
SAE(Stacked Auto-encoders堆叠自动编码器,
Sparse Auto-encoders稀疏自动编码器、
Denoising Auto-encoders去噪自动编码器、
Contractive Auto-encoders 收缩自动编码器),
RBM(RestrictedBoltzmann Machine 受限玻尔兹曼机),
DBN(Deep Belief Network 深度信念网络),
CNN(ConvolutionalNeural Network 卷积神经网络),
Word2Vec(词向量学习模型)。
DimensionalityReduction(降维):
LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 线性判别分析/Fisher线性判别,
PCA(Principal Component Analysis 主成分分析),
ICA(IndependentComponent Analysis 独立成分分析),
SVD(Singular Value Decomposition 奇异值分解),
FA(FactorAnalysis 因子分析法)。
Text Mining(文本挖掘):
VSM(Vector Space Model向量空间模型),
Word2Vec(词向量学习模型),
TF(Term Frequency词频),
TF-IDF(Term Frequency-Inverse DocumentFrequency 词频-逆向文档频率),
MI(MutualInformation 互信息),
ECE(Expected Cross Entropy 期望交叉熵),
QEMI(二次信息熵),
IG(InformationGain 信息增益),
IGR(Information Gain Ratio 信息增益率),
Gini(基尼系数),
x2 Statistic(x2统计量),
TEW(TextEvidence Weight文本证据权),
OR(Odds Ratio 优势率),
N-Gram Model,
LSA(Latent Semantic Analysis 潜在语义分析),
PLSA(ProbabilisticLatent Semantic Analysis 基于概率的潜在语义分析),
LDA(Latent DirichletAllocation 潜在狄利克雷模型)。
Association Mining(关联挖掘):
Apriori,
FP-growth(Frequency Pattern Tree Growth 频繁模式树生长算法),
AprioriAll,
Spade。
Recommendation Engine(推荐引擎):
DBR(Demographic-based Recommendation 基于人口统计学的推荐),
CBR(Context-basedRecommendation 基于内容的推荐),
CF(Collaborative Filtering协同过滤),
UCF(User-basedCollaborative Filtering Recommendation 基于用户的协同过滤推荐),
ICF(Item-basedCollaborative Filtering Recommendation 基于项目的协同过滤推荐)。
Similarity Measure&Distance Measure(相似性与距离度量):
Euclidean Distance(欧式距离),
ManhattanDistance(曼哈顿距离),
Chebyshev Distance(切比雪夫距离),
MinkowskiDistance(闵可夫斯基距离),
Standardized Euclidean Distance(标准化欧氏距离),
MahalanobisDistance(马氏距离),
Cos(Cosine 余弦),
HammingDistance/Edit Distance(汉明距离/编辑距离),
JaccardDistance(杰卡德距离),
Correlation Coefficient Distance(相关系数距离),
InformationEntropy(信息熵),
KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相对熵)。
Feature Selection(特征选择算法):
Mutual Information(互信息),
DocumentFrequence(文档频率),
Information Gain(信息增益),
Chi-squared Test(卡方检验),
Gini(基尼系数)。
Outlier Detection(异常点检测算法):
Statistic-based(基于统计),
Distance-based(基于距离),
Density-based(基于密度),
Clustering-based(基于聚类)。
Learning to Rank(基于学习的排序):
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART。
More
螺纹钢、铁矿石比值交易策略的应用分析
要如何分析期权的波动率?
程序化在期权的应用
时间与周期
大脑中的支持向量机
聊聊做市商和对赌
世上最深的路,就是你的套路:深挖套利江湖的那些“坑”
读《概率统计超入门》及《万万没想到之最简单概率论的五个智慧》
资金管理三部曲:格局为先
能用加法赚钱,我绝不用乘法
不预测,只对价格变动做出反映
阿里云linux主机运行托管者,主机重启了,如何找回原来的托管者呢?
高波動代表高風險?價值投資的風險定義跟你想得不一樣
我想问问虚拟货币实盘的话可以支持哪些平台哪些币交易
零和市场、负和市场
高频交易策略谈-做市商与逆向选择
做一名概率论者-读《随机漫步的傻瓜》
概率、赔率和长期交易的正期望值
有关未来函数的疑惑,想请教诸大神!
货币银行体系的资金和信贷