Die Gaussian Channel Adaptive Moving Average Strategy ist eine quantitative Handelsstrategie, die Gaussian Filtering Techniken und adaptive Parameter-Einstellungen nutzt. Basierend auf der von John Ehlers vorgeschlagenen Gaussian Filter-Theorie erzeugt diese Strategie reibungslose und adaptive Handelssignale, indem mehrere exponentielle gleitende Durchschnittsberechnungen auf Preisdaten angewendet werden. Der Kern der Strategie besteht darin, einen dynamisch angepassten Preiskanal zu konstruieren, mit oberen und unteren Bands, die durch Hinzufügen und Subtrahieren des gefilterten wahren Bereichs des Gaussian-filterten Preises erhalten werden. Wenn der Preis über das obere Band bricht, wird eine Long-Position eingegeben, und wenn er das untere Band bricht, wird eine Short-Position eingegeben. Darüber hinaus führt die Strategie zeitliche Perioden-Einstellungen ein, die flexible Einstellungen für die Anfangs- und Endzeiten der Strategieausführung ermöglichen, wodurch ihre Prak
Die Grundsätze der Adaptive Moving Average-Strategie des Gauss-Kanals sind wie folgt:
Die Strategie des adaptiven gleitenden Durchschnitts des Gauss-Kanals hat folgende Vorteile:
Trotz seiner vielen Vorteile birgt die Adaptive Moving Average-Strategie des Gauss-Kanals immer noch bestimmte Risiken:
Die Optimierungsrichtlinien für die Adaptive Moving Average-Strategie des Gauss-Kanals umfassen:
Die Adaptive Moving Average-Strategie ist eine quantitative Handelsstrategie, die auf Gauss-Filterung und adaptiven Parametern basiert und durch dynamische Konstruktion von Preiskanälen reibungslose und zuverlässige Handelssignale erzeugt. Die Strategie hat Vorteile wie starke Anpassungsfähigkeit, gute Trendverfolgungsfähigkeit, hohe Geschmeidigkeit, große Flexibilität und starke Praktikabilität. Sie ist jedoch auch mit Risiken wie Parametersetzung, plötzlichen Ereignissen, Überanpassung und Arbitrage konfrontiert. In Zukunft kann die Strategie durch dynamische Parameteroptimierung, Multi-Faktor-Fusion, Positionsmanagementoptimierung und Multi-Instrument-Koordination weiter verfeinert und verbessert werden.
/*backtest start: 2023-03-22 00:00:00 end: 2024-03-27 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy(title="Gaussian Channel Strategy v1.0", overlay=true, calc_on_every_tick=false, initial_capital=10000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1) // Date condition inputs startDate = input(title="Date Start", type=input.time, defval=timestamp("1 Jan 2018 00:00 +0000"), group="Dates") endDate = input(title="Date End", type=input.time, defval=timestamp("31 Dec 2060 23:59 +0000"), group="Dates") timeCondition = true // This study is an experiment utilizing the Ehlers Gaussian Filter technique combined with lag reduction techniques and true range to analyze trend activity. // Gaussian filters, as Ehlers explains it, are simply exponential moving averages applied multiple times. // First, beta and alpha are calculated based on the sampling period and number of poles specified. The maximum number of poles available in this script is 9. // Next, the data being analyzed is given a truncation option for reduced lag, which can be enabled with "Reduced Lag Mode". // Then the alpha and source values are used to calculate the filter and filtered true range of the dataset. // Filtered true range with a specified multiplier is then added to and subtracted from the filter, generating a channel. // Lastly, a one pole filter with a N pole alpha is averaged with the filter to generate a faster filter, which can be enabled with "Fast Response Mode". //Custom bar colors are included. //Note: Both the sampling period and number of poles directly affect how much lag the indicator has, and how smooth the output is. // Larger inputs will result in smoother outputs with increased lag, and smaller inputs will have noisier outputs with reduced lag. // For the best results, I recommend not setting the sampling period any lower than the number of poles + 1. Going lower truncates the equation. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Updates: // Huge shoutout to @e2e4mfck for taking the time to improve the calculation method! // -> migrated to v4 // -> pi is now calculated using trig identities rather than being explicitly defined. // -> The filter calculations are now organized into functions rather than being individually defined. // -> Revamped color scheme. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Functions - courtesy of @e2e4mfck //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Filter function f_filt9x (_a, _s, _i) => int _m2 = 0, int _m3 = 0, int _m4 = 0, int _m5 = 0, int _m6 = 0, int _m7 = 0, int _m8 = 0, int _m9 = 0, float _f = .0, _x = (1 - _a) // Weights. // Initial weight _m1 is a pole number and equal to _i _m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0 _m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0 _m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0 _m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0 _m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0 _m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0 _m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0 _m9 := _i == 9 ? 1 : 0 // filter _f := pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * pow(_x, 9) * nz(_f[9]) : 0) //9 var declaration fun f_pole (_a, _s, _i) => _f1 = f_filt9x(_a, _s, 1), _f2 = (_i >= 2 ? f_filt9x(_a, _s, 2) : 0), _f3 = (_i >= 3 ? f_filt9x(_a, _s, 3) : 0) _f4 = (_i >= 4 ? f_filt9x(_a, _s, 4) : 0), _f5 = (_i >= 5 ? f_filt9x(_a, _s, 5) : 0), _f6 = (_i >= 6 ? f_filt9x(_a, _s, 6) : 0) _f7 = (_i >= 2 ? f_filt9x(_a, _s, 7) : 0), _f8 = (_i >= 8 ? f_filt9x(_a, _s, 8) : 0), _f9 = (_i == 9 ? f_filt9x(_a, _s, 9) : 0) _fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na [_fn, _f1] //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Inputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Source src = input(defval=hlc3, title="Source") //Poles int N = input(defval=4, title="Poles", minval=1, maxval=9) //Period int per = input(defval=144, title="Sampling Period", minval=2) //True Range Multiplier float mult = input(defval=1.414, title="Filtered True Range Multiplier", minval=0) //Lag Reduction bool modeLag = input(defval=false, title="Reduced Lag Mode") bool modeFast = input(defval=false, title="Fast Response Mode") //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Definitions //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Beta and Alpha Components beta = (1 - cos(4*asin(1)/per)) / (pow(1.414, 2/N) - 1) alpha = - beta + sqrt(pow(beta, 2) + 2*beta) //Lag lag = (per - 1)/(2*N) //Data srcdata = modeLag ? src + (src - src[lag]) : src trdata = modeLag ? tr(true) + (tr(true) - tr(true)[lag]) : tr(true) //Filtered Values [filtn, filt1] = f_pole(alpha, srcdata, N) [filtntr, filt1tr] = f_pole(alpha, trdata, N) //Lag Reduction filt = modeFast ? (filtn + filt1)/2 : filtn filttr = modeFast ? (filtntr + filt1tr)/2 : filtntr //Bands hband = filt + filttr*mult lband = filt - filttr*mult // Colors color1 = #0aff68 color2 = #00752d color3 = #ff0a5a color4 = #990032 fcolor = filt > filt[1] ? #0aff68 : filt < filt[1] ? #ff0a5a : #cccccc barcolor = (src > src[1]) and (src > filt) and (src < hband) ? #0aff68 : (src > src[1]) and (src >= hband) ? #0aff1b : (src <= src[1]) and (src > filt) ? #00752d : (src < src[1]) and (src < filt) and (src > lband) ? #ff0a5a : (src < src[1]) and (src <= lband) ? #ff0a11 : (src >= src[1]) and (src < filt) ? #990032 : #cccccc //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Outputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Filter Plot filtplot = plot(filt, title="Filter", color=fcolor, linewidth=3) //Band Plots hbandplot = plot(hband, title="Filtered True Range High Band", color=fcolor) lbandplot = plot(lband, title="Filtered True Range Low Band", color=fcolor) //Channel Fill fill(hbandplot, lbandplot, title="Channel Fill", color=fcolor, transp=80) //Bar Color barcolor(barcolor) longCondition = crossover(close, hband) and timeCondition closeAllCondition = crossunder(close, hband) and timeCondition if longCondition strategy.entry("long", strategy.long) if closeAllCondition strategy.close("long")