This strategy utilizes the kNN (k Nearest Neighbors) machine learning algorithm to predict market trends and generate long and short signals accordingly. It comprehensively considers multiple factors like historical data, technical indicators, and so on, dynamically capturing market patterns through training kNN models to realize automated trend following trading.
Collect training data: collect historical data like closing prices, trading volumes, as well as technical indicators like RSI, CCI over time.
Data preprocessing: normalize indicator values into range 0-100.
Train kNN model: take current two features in the kNN model, calculate Euclidean distances between these feature vectors and historical ones, choose k nearest neighbor samples based on distances, and count label (bullish or bearish) distribution of these k samples.
Obtain predictions: make predictions on current market trend based on labels of k nearest neighbors. If prediction is bullish, generate long signal. If prediction is bearish, generate short signal.
Trade using stop loss, position sizing, moving average filters.
Automatically recognize technical patterns using machine learning without manual intervention.
Flexibility to select different technical indicators as model features for real-time optimization.
Integrates strict risk control mechanisms like stop loss, position sizing.
Visualized stop loss lines for clarity and intuition.
Prediction errors may exist in machine learning. Optimization methods include adjusting k value, feature vectors, sample time range properly.
Potential risks in one-direction trading. Add permission for two-way trading in code to eliminate bugs.
Improper parameter settings may lead to overtrading. Adjust position sizing, trading frequency accordingly.
Test different types of technical indicators as kNN input features.
Try other distance metrics like Manhattan distance.
Use sample distances or classification quality to adjust position sizes.
Add model train/test split for rolling optimization.
This strategy realizes market trend prediction using classical kNN algorithm and executes trend following trading based on prediction signals. It features adjustable parameters and controllable risks, providing effective automated trading solutions for users. Users can continuously improve strategy performance by optimizing technical indicator combinations, model hyperparameters and more.
/*backtest start: 2023-11-07 00:00:00 end: 2023-12-07 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © sosacur01 //@version=5 strategy(title=" kNN-based| Trend Following | Trend Following", overlay=true, pyramiding=1, commission_type=strategy.commission.percent, commission_value=0.2, initial_capital=10000) //========================================== // This script, based on Capissimo's original indicator code, transforms a kNN-based machine learning indicator into a TradingView strategy. // It incorporates a backtest date range filter, on/off controls for long and short positions, a moving average filter, and dynamic risk management for adaptive position sizing. // Credit to Capissimo for the foundational kNN algorithm. //========================================== //BACKTEST RANGE useDateFilter = input.bool(true, title="Filter Date Range of Backtest", group="Backtest Time Period") backtestStartDate = input(timestamp("1 jan 2017"), title="Start Date", group="Backtest Time Period", tooltip="This start date is in the time zone of the exchange " + "where the chart's instrument trades. It doesn't use the time " + "zone of the chart or of your computer.") backtestEndDate = input(timestamp("1 Jul 2100"), title="End Date", group="Backtest Time Period", tooltip="This end date is in the time zone of the exchange " + "where the chart's instrument trades. It doesn't use the time " + "zone of the chart or of your computer.") inTradeWindow = true if not inTradeWindow and inTradeWindow[1] strategy.cancel_all() strategy.close_all(comment="Date Range Exit") //-------------------------------------- //LONG/SHORT POSITION ON/OFF INPUT LongPositions = input.bool(title='On/Off Long Postion', defval=true, group="Long & Short Position") ShortPositions = input.bool(title='On/Off Short Postion', defval=true, group="Long & Short Position") //-------------------------------------- // kNN-based Strategy (FX and Crypto) // Description: // This strategy uses a classic machine learning algorithm - k Nearest Neighbours (kNN) - // to let you find a prediction for the next (tomorrow's, next month's, etc.) market move. // Being an unsupervised machine learning algorithm, kNN is one of the most simple learning algorithms. // To do a prediction of the next market move, the kNN algorithm uses the historic data, // collected in 3 arrays - feature1, feature2 and directions, - and finds the k-nearest // neighbours of the current indicator(s) values. // The two dimensional kNN algorithm just has a look on what has happened in the past when // the two indicators had a similar level. It then looks at the k nearest neighbours, // sees their state and thus classifies the current point. // The kNN algorithm offers a framework to test all kinds of indicators easily to see if they // have got any *predictive value*. One can easily add cog, wpr and others. // Note: TradingViews's playback feature helps to see this strategy in action. // Warning: Signals ARE repainting. // Style tags: Trend Following, Trend Analysis // Asset class: Equities, Futures, ETFs, Currencies and Commodities // Dataset: FX Minutes/Hours+++/Days //-- Preset Dates int startdate = timestamp('01 Jan 2000 00:00:00 GMT+10') int stopdate = timestamp('31 Dec 2025 23:45:00 GMT+10') //-- Inputs StartDate = input (startdate, 'Start Date', group="kNN-based Inputs") StopDate = input (stopdate, 'Stop Date', group="kNN-based Inputs") Indicator = input.string('RSI', 'Indicator', ['RSI','ROC','CCI','Volume','All'], group="kNN-based Inputs") ShortWinow = input.int (8, 'Short Period [1..n]', 1, group="kNN-based Inputs") LongWindow = input.int (29, 'Long Period [2..n]', 2, group="kNN-based Inputs") BaseK = input.int (400, 'Base No. of Neighbours (K) [5..n]', 5, group="kNN-based Inputs") Filter = input.bool (false, 'Volatility Filter', group="kNN-based Inputs") Bars = input.int (300, 'Bar Threshold [2..5000]', 2, 5000, group="kNN-based Inputs") //-- Constants var int BUY = 1 var int SELL =-1 var int CLEAR = 0 var int k = math.floor(math.sqrt(BaseK)) // k Value for kNN algo //-- Variable // Training data, normalized to the range of [0,...,100] var array<float> feature1 = array.new_float(0) // [0,...,100] var array<float> feature2 = array.new_float(0) // ... var array<int> directions = array.new_int(0) // [-1; +1] // Result data var array<int> predictions = array.new_int(0) var float prediction = 0.0 var array<int> bars = array.new<int>(1, 0) // array used as a container for inter-bar variables // Signals var int signal = CLEAR //-- Functions minimax(float x, int p, float min, float max) => float hi = ta.highest(x, p), float lo = ta.lowest(x, p) (max - min) * (x - lo)/(hi - lo) + min cAqua(int g) => g>9?#0080FFff:g>8?#0080FFe5:g>7?#0080FFcc:g>6?#0080FFb2:g>5?#0080FF99:g>4?#0080FF7f:g>3?#0080FF66:g>2?#0080FF4c:g>1?#0080FF33:#00C0FF19 cPink(int g) => g>9?#FF0080ff:g>8?#FF0080e5:g>7?#FF0080cc:g>6?#FF0080b2:g>5?#FF008099:g>4?#FF00807f:g>3?#FF008066:g>2?#FF00804c:g>1?#FF008033:#FF008019 inside_window(float start, float stop) => time >= start and time <= stop ? true : false //-- Logic bool window = true // 3 pairs of predictor indicators, long and short each float rs = ta.rsi(close, LongWindow), float rf = ta.rsi(close, ShortWinow) float cs = ta.cci(close, LongWindow), float cf = ta.cci(close, ShortWinow) float os = ta.roc(close, LongWindow), float of = ta.roc(close, ShortWinow) float vs = minimax(volume, LongWindow, 0, 99), float vf = minimax(volume, ShortWinow, 0, 99) // TOADD or TOTRYOUT: // ta.cmo(close, LongWindow), ta.cmo(close, ShortWinow) // ta.mfi(close, LongWindow), ta.mfi(close, ShortWinow) // ta.mom(close, LongWindow), ta.mom(close, ShortWinow) float f1 = switch Indicator 'RSI' => rs 'CCI' => cs 'ROC' => os 'Volume' => vs => math.avg(rs, cs, os, vs) float f2 = switch Indicator 'RSI' => rf 'CCI' => cf 'ROC' => of 'Volume' => vf => math.avg(rf, cf, of, vf) // Classification data, what happens on the next bar int class_label = int(math.sign(close[1] - close[0])) // eq. close[1]<close[0] ? SELL: close[1]>close[0] ? BUY : CLEAR // Use particular training period if window // Store everything in arrays. Features represent a square 100 x 100 matrix, // whose row-colum intersections represent class labels, showing historic directions array.push(feature1, f1) array.push(feature2, f2) array.push(directions, class_label) // Ucomment the followng statement (if barstate.islast) and tab everything below // between BOBlock and EOBlock marks to see just the recent several signals gradually // showing up, rather than all the preceding signals //if barstate.islast //==BOBlock // Core logic of the algorithm int size = array.size(directions) float maxdist = -999.0 // Loop through the training arrays, getting distances and corresponding directions. for i=0 to size-1 // Calculate the euclidean distance of current point to all historic points, // here the metric used might as well be a manhattan distance or any other. float d = math.sqrt(math.pow(f1 - array.get(feature1, i), 2) + math.pow(f2 - array.get(feature2, i), 2)) if d > maxdist maxdist := d if array.size(predictions) >= k array.shift(predictions) array.push(predictions, array.get(directions, i)) //==EOBlock // Note: in this setup there's no need for distances array (i.e. array.push(distances, d)), // but the drawback is that a sudden max value may shadow all the subsequent values. // One of the ways to bypass this is to: // 1) store d in distances array, // 2) calculate newdirs = bubbleSort(distances, directions), and then // 3) take a slice with array.slice(newdirs) from the end // Get the overall prediction of k nearest neighbours prediction := array.sum(predictions) bool filter = Filter ? ta.atr(10) > ta.atr(40) : true // filter out by volatility or ex. ta.atr(1) > ta.atr(10)... // Now that we got a prediction for the next market move, we need to make use of this prediction and // trade it. The returns then will show if everything works as predicted. // Over here is a simple long/short interpretation of the prediction, // but of course one could also use the quality of the prediction (+5 or +1) in some sort of way, // ex. for position sizing. bool long = prediction > 0 and filter bool short = prediction < 0 and filter bool clear = not(long and short) if array.get(bars, 0)==Bars // stop by trade duration signal := CLEAR array.set(bars, 0, 0) else array.set(bars, 0, array.get(bars, 0) + 1) signal := long ? BUY : short ? SELL : clear ? CLEAR : nz(signal[1]) int changed = ta.change(signal) bool startLongTrade = changed and signal==BUY bool startShortTrade = changed and signal==SELL // bool endLongTrade = changed and signal==SELL // bool endShortTrade = changed and signal==BUY bool clear_condition = changed and signal==CLEAR //or (changed and signal==SELL) or (changed and signal==BUY) float maxpos = ta.highest(high, 10) float minpos = ta.lowest (low, 10) //----//MA INPUTS MAFilter = input.bool(title='Use MA as Filter', defval=true, group = "MA Inputs") averageType1 = input.string(defval="SMA", group="MA Inputs", title="MA Type", options=["SMA", "EMA", "WMA", "HMA", "RMA", "SWMA", "ALMA", "VWMA", "VWAP"]) averageLength1 = input.int(defval=40, title="MA Length", group="MA Inputs") averageSource1 = input(close, title="MA Source", group="MA Inputs") //MA TYPE MovAvgType1(averageType1, averageSource1, averageLength1) => switch str.upper(averageType1) "SMA" => ta.sma(averageSource1, averageLength1) "EMA" => ta.ema(averageSource1, averageLength1) "WMA" => ta.wma(averageSource1, averageLength1) "HMA" => ta.hma(averageSource1, averageLength1) "RMA" => ta.rma(averageSource1, averageLength1) "SWMA" => ta.swma(averageSource1) "ALMA" => ta.alma(averageSource1, averageLength1, 0.85, 6) "VWMA" => ta.vwma(averageSource1, averageLength1) "VWAP" => ta.vwap(averageSource1) => runtime.error("Moving average type '" + averageType1 + "' not found!"), na // MA COLOR VALUES ma = MovAvgType1(averageType1, averageSource1, averageLength1) ma_plot = close > ma ? color.rgb(54, 111, 56) : color.rgb(54, 111, 56, 52) // MA BUY/SELL CONDITIONS bullish_ma = MAFilter ? close > ma : inTradeWindow bearish_ma = MAFilter ? close < ma : inTradeWindow // MA ALTERNATING PLOT plot(MAFilter ? ma : na, color=ma_plot, title="Moving Average", linewidth=3) //-------------------------------------- //ENTRIES AND EXITS long_entry = if inTradeWindow and startLongTrade and bullish_ma and LongPositions true long_exit = if inTradeWindow and startShortTrade true short_entry = if inTradeWindow and startShortTrade and bearish_ma and ShortPositions true short_exit = if inTradeWindow and startLongTrade true //-------------------------------------- //RISK MANAGEMENT - SL, MONEY AT RISK, POSITION SIZING atrPeriod = input.int(7, "ATR Length", group="Risk Management Inputs") sl_atr_multiplier = input.float(title="Long Position - Stop Loss - ATR Multiplier", defval=2, group="Risk Management Inputs", step=0.5) sl_atr_multiplier_short = input.float(title="Short Position - Stop Loss - ATR Multiplier", defval=2, group="Risk Management Inputs", step=0.5) i_pctStop = input.float(2, title="% of Equity at Risk", step=.5, group="Risk Management Inputs")/100 //ATR VALUE _atr = ta.atr(atrPeriod) //CALCULATE LAST ENTRY PRICE lastEntryPrice = strategy.opentrades.entry_price(strategy.opentrades - 1) //STOP LOSS - LONG POSITIONS var float sl = na //CALCULTE SL WITH ATR AT ENTRY PRICE - LONG POSITION if (strategy.position_size[1] != strategy.position_size) sl := lastEntryPrice - (_atr * sl_atr_multiplier) //IN TRADE - LONG POSITIONS inTrade = strategy.position_size > 0 //PLOT SL - LONG POSITIONS plot(inTrade ? sl : na, color=color.blue, style=plot.style_circles, title="Long Position - Stop Loss") //CALCULATE ORDER SIZE - LONG POSITIONS positionSize = (strategy.equity * i_pctStop) / (_atr * sl_atr_multiplier) //============================================================================================ //STOP LOSS - SHORT POSITIONS var float sl_short = na //CALCULTE SL WITH ATR AT ENTRY PRICE - SHORT POSITIONS if (strategy.position_size[1] != strategy.position_size) sl_short := lastEntryPrice + (_atr * sl_atr_multiplier_short) //IN TRADE SHORT POSITIONS inTrade_short = strategy.position_size < 0 //PLOT SL - SHORT POSITIONS plot(inTrade_short ? sl_short : na, color=color.red, style=plot.style_circles, title="Short Position - Stop Loss") //CALCULATE ORDER - SHORT POSITIONS positionSize_short = (strategy.equity * i_pctStop) / (_atr * sl_atr_multiplier_short) //=============================================== //LONG STRATEGY strategy.entry("Long", strategy.long, comment="Long", when = long_entry and not short_entry, qty=positionSize) if (strategy.position_size > 0) strategy.close("Long", when = (long_exit), comment="Close Long") strategy.exit("Long", stop = sl, comment="Exit Long") //SHORT STRATEGY strategy.entry("Short", strategy.short, comment="Short", when = short_entry and not long_entry, qty=positionSize_short) if (strategy.position_size < 0) strategy.close("Short", when = (short_exit), comment="Close Short") strategy.exit("Short", stop = sl_short, comment="Exit Short") //ONE DIRECTION TRADING COMMAND (BELLOW ONLY ACTIVATE TO CORRECT BUGS) //strategy.risk.allow_entry_in(strategy.direction.long)