Estrategia de comercio de energía de plazo
La Estrategia de Comercio de Potencia de Marco de Tiempo es una estrategia que utiliza los patrones de tendencia de precios de las acciones durante diferentes marcos de tiempo dentro de un día.
La lógica central de esta estrategia es que los precios de las acciones tienden a exhibir ciertos patrones durante diferentes períodos de un día. La estrategia establece 48 marcos de tiempo de media hora a lo largo del día y determina si debe ir largo, ir corto o no hacer nada durante cada marco de tiempo. Cuando el tiempo entra en un cierto marco de tiempo, si la configuración es
Por ejemplo, si el marco de tiempo 6:30am - 7:00am se establece en
La ventaja de esta estrategia radica en su capacidad para capitalizar las fluctuaciones intradiarias de los precios de las acciones. El riesgo es que tales patrones puedan cambiar con el tiempo y hacer que la estrategia sea ineficaz.
La mayor ventaja de esta estrategia es que utiliza el atributo
Otra ventaja es la flexibilidad de la configuración de parámetros.
El principal riesgo proviene de la inestabilidad de los supuestos: si el patrón de precios intradiarios cambia sustancialmente para una acción, las expectativas de rentabilidad de la estrategia se verán afectadas.
Además, la alta frecuencia de las operaciones plantea riesgos en términos de costes de transacción.
Considerar la introducción de modelos de aprendizaje automático para permitir el ajuste dinámico de los parámetros, por ejemplo, modelos LSTM para pronosticar los precios del próximo período y ajustar los ajustes largo/corto en consecuencia.
Alternativamente, combine los fundamentos de las acciones para evaluar la probabilidad de un cambio de patrón, para determinar el momento óptimo para la activación de la estrategia.
La estrategia de trading de tiempo genera alfa al identificar las operaciones intradiarias óptimas durante diferentes períodos al analizar patrones de precios recurrentes. Con un ajuste flexible de parámetros y controles de riesgos, es una estrategia de trading de algo eficiente. Las rutas de optimización futuras implican la adopción de ML o combos fundamentales para expandir la rentabilidad y mejorar la robustez frente a incertidumbres.
/*backtest start: 2023-10-23 00:00:00 end: 2023-11-22 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ //@version=4 strategy("Timeframe Time of Day Buying and Selling Strategy", overlay=true) frommonth = input(defval = 6, minval = 01, maxval = 12, title = "From Month") fromday = input(defval = 14, minval = 01, maxval = 31, title = "From day") fromyear = input(defval = 2021, minval = 1900, maxval = 2100, title = "From Year") tomonth = input(defval = 12, minval = 01, maxval = 12, title = "To Month") today = input(defval = 31, minval = 01, maxval = 31, title = "To day") toyear = input(defval = 2100, minval = 1900, maxval = 2100, title = "To Year") timeframes = array.new_string(48, '') timeframes_options = array.new_string(49, 'None') array.set(timeframes,0,'2330-0000') array.set(timeframes_options,0, input(defval='None', options=['Long','Short','None'], title='0000-0030')) array.set(timeframes,1,'0000-0030') array.set(timeframes_options,1, input(defval='Long', options=['Long','Short','None'], title='0030-0100')) array.set(timeframes,2,'0030-0100') array.set(timeframes_options,2, input(defval='Long', options=['Long','Short','None'], title='0100-0130')) array.set(timeframes,3,'0100-0130') array.set(timeframes_options,3, input(defval='Long', options=['Long','Short','None'], title='0130-0200')) array.set(timeframes,4,'0130-0200') array.set(timeframes_options,4, input(defval='Long', options=['Long','Short','None'], title='0200-0230')) array.set(timeframes,5,'0200-0230') array.set(timeframes_options,5, input(defval='None', options=['Long','Short','None'], title='0230-0300')) array.set(timeframes,6,'0230-0300') array.set(timeframes_options,6, input(defval='None', options=['Long','Short','None'], title='0300-0330')) array.set(timeframes,7,'0300-0330') array.set(timeframes_options,7, input(defval='None', options=['Long','Short','None'], title='0330-0400')) array.set(timeframes,8,'0330-0400') array.set(timeframes_options,8, input(defval='None', options=['Long','Short','None'], title='0400-0430')) array.set(timeframes,9,'0400-0430') array.set(timeframes_options,9, input(defval='None', options=['Long','Short','None'], title='0430-0500')) array.set(timeframes,10,'0430-0500') array.set(timeframes_options,10, input(defval='None', options=['Long','Short','None'], title='0500-0530')) array.set(timeframes,11,'0500-0530') array.set(timeframes_options,11, input(defval='None', options=['Long','Short','None'], title='0530-0600')) array.set(timeframes,12,'0530-0600') array.set(timeframes_options,12, input(defval='None', options=['Long','Short','None'], title='0600-0630')) array.set(timeframes,13,'0600-0630') array.set(timeframes_options,13, input(defval='None', options=['Long','Short','None'], title='0630-0700')) array.set(timeframes,14,'0630-0700') array.set(timeframes_options,14, input(defval='None', options=['Long','Short','None'], title='0700-0730')) array.set(timeframes,15,'0700-0730') array.set(timeframes_options,15, input(defval='None', options=['Long','Short','None'], title='0730-0800')) array.set(timeframes,16,'0730-0800') array.set(timeframes_options,16, input(defval='None', options=['Long','Short','None'], title='0800-0830')) array.set(timeframes,17,'0800-0830') array.set(timeframes_options,17, input(defval='None', options=['Long','Short','None'], title='0830-0900')) array.set(timeframes,18,'0830-0900') array.set(timeframes_options,18, input(defval='None', options=['Long','Short','None'], title='0900-0930')) array.set(timeframes,19,'0900-0930') array.set(timeframes_options,19, input(defval='None', options=['Long','Short','None'], title='0930-1000')) array.set(timeframes,20,'0930-1000') array.set(timeframes_options,20, input(defval='None', options=['Long','Short','None'], title='1000-1030')) array.set(timeframes,21,'1000-1030') array.set(timeframes_options,21, input(defval='None', options=['Long','Short','None'], title='1030-1100')) array.set(timeframes,22,'1030-1100') array.set(timeframes_options,22, input(defval='None', options=['Long','Short','None'], title='1100-1130')) array.set(timeframes,23,'1100-1130') array.set(timeframes_options,23, input(defval='None', options=['Long','Short','None'], title='1130-1200')) array.set(timeframes,24,'1130-1200') array.set(timeframes_options,24, input(defval='None', options=['Long','Short','None'], title='1200-1230')) array.set(timeframes,25,'1200-1230') array.set(timeframes_options,25, input(defval='None', options=['Long','Short','None'], title='1230-1300')) array.set(timeframes,26,'1230-1300') array.set(timeframes_options,26, input(defval='None', options=['Long','Short','None'], title='1300-1330')) array.set(timeframes,27,'1300-1330') array.set(timeframes_options,27, input(defval='None', options=['Long','Short','None'], title='1330-1400')) array.set(timeframes,28,'1330-1400') array.set(timeframes_options,28, input(defval='None', options=['Long','Short','None'], title='1400-1430')) array.set(timeframes,29,'1400-1430') array.set(timeframes_options,29, input(defval='None', options=['Long','Short','None'], title='1430-1500')) array.set(timeframes,30,'1430-1500') array.set(timeframes_options,30, input(defval='None', options=['Long','Short','None'], title='1500-1530')) array.set(timeframes,31,'1500-1530') array.set(timeframes_options,31, input(defval='None', options=['Long','Short','None'], title='1530-1600')) array.set(timeframes,32,'1530-1600') array.set(timeframes_options,32, input(defval='None', options=['Long','Short','None'], title='1600-1630')) array.set(timeframes,33,'1600-1630') array.set(timeframes_options,33, input(defval='None', options=['Long','Short','None'], title='1630-1700')) array.set(timeframes,34,'1630-1700') array.set(timeframes_options,34, input(defval='None', options=['Long','Short','None'], title='1700-1730')) array.set(timeframes,35,'1700-1730') array.set(timeframes_options,35, input(defval='None', options=['Long','Short','None'], title='1730-1800')) array.set(timeframes,36,'1730-1800') array.set(timeframes_options,36, input(defval='None', options=['Long','Short','None'], title='1800-1830')) array.set(timeframes,37,'1800-1830') array.set(timeframes_options,37, input(defval='None', options=['Long','Short','None'], title='1830-1900')) array.set(timeframes,38,'1830-1900') array.set(timeframes_options,38, input(defval='None', options=['Long','Short','None'], title='1900-0930')) array.set(timeframes,39,'1900-0930') array.set(timeframes_options,39, input(defval='None', options=['Long','Short','None'], title='1930-2000')) array.set(timeframes,40,'1930-2000') array.set(timeframes_options,40, input(defval='None', options=['Long','Short','None'], title='2000-2030')) array.set(timeframes,41,'2000-2030') array.set(timeframes_options,41, input(defval='None', options=['Long','Short','None'], title='2030-2100')) array.set(timeframes,42,'2030-2100') array.set(timeframes_options,42, input(defval='None', options=['Long','Short','None'], title='2100-2130')) array.set(timeframes,43,'2100-2130') array.set(timeframes_options,43, input(defval='None', options=['Long','Short','None'], title='2130-2200')) array.set(timeframes,44,'2130-2200') array.set(timeframes_options,44, input(defval='None', options=['Long','Short','None'], title='2200-2230')) array.set(timeframes,45,'2200-2230') array.set(timeframes_options,45, input(defval='None', options=['Long','Short','None'], title='2230-2300')) array.set(timeframes,46,'2230-2300') array.set(timeframes_options,46, input(defval='None', options=['Long','Short','None'], title='2300-2330')) array.set(timeframes,47,'2300-2330') array.set(timeframes_options,47, input(defval='None', options=['Long','Short','None'], title='2330-0000')) string_hour = hour<10?'0'+tostring(hour):tostring(hour) string_minute = minute<10?'0'+tostring(minute):tostring(minute) current_time = string_hour+string_minute f_strLeft(_str, _n) => string[] _chars = str.split(_str, "") int _len = array.size(_chars) int _end = min(_len, max(0, _n)) string[] _substr = array.new_string(0) if _end <= _len _substr := array.slice(_chars, 0, _end) string _return = array.join(_substr, "") f_strRight(_str, _n) => string[] _chars = str.split(_str, "") int _len = array.size(_chars) int _beg = max(0, _len - _n) string[] _substr = array.new_string(0) if _beg < _len _substr := array.slice(_chars, _beg, _len) string _return = array.join(_substr, "") for i = 0 to array.size(timeframes) - 1 start_time = f_strLeft(array.get(timeframes, i), 4) end_time = f_strRight(array.get(timeframes, i), 4) if current_time == end_time and array.get(timeframes_options, i)!='None' and array.get(timeframes_options, i) != array.get(timeframes_options, i==47?0:i+1) and timestamp(toyear, tomonth, today, 00, 00) strategy.close_all() if current_time == start_time and array.get(timeframes_options, i)!='None' and array.get(timeframes_options, i) != array.get(timeframes_options, i==0?47:i-1) if array.get(timeframes_options, i) == 'Long' strategy.entry("Long", strategy.long, when=(time > timestamp(fromyear, frommonth, fromday, 00, 00) and time < timestamp(toyear, tomonth, today, 00, 00))) else if array.get(timeframes_options, i) == 'Short' strategy.entry("Short", strategy.short, when=(time > timestamp(fromyear, frommonth, fromday, 00, 00) and time < timestamp(toyear, tomonth, today, 00, 00)))