Cette stratégie utilise principalement le principe de croisement de la moyenne mobile, combiné aux signaux d'inversion de l'indicateur RSI et à un algorithme de croisement de moyenne mobile double personnalisé pour mettre en œuvre le trading de tendance. La stratégie suit deux moyennes mobiles de différentes périodes, avec une moyenne mobile plus rapide pour suivre les tendances à court terme et une moyenne moyenne plus lente pour suivre les tendances à long terme. Lorsque la moyenne mobile plus rapide traverse la moyenne mobile plus lente vers le haut, cela indique une tendance haussière et une chance d'achat. Lorsque la moyenne mobile plus rapide traverse en dessous de la moyenne mobile plus lente, cela indique la fin de la tendance à court terme et une chance de fermer les positions.
Calculer deux groupes de moyennes mobiles VWAP avec des paramètres différents, représentant respectivement des tendances à long terme et à court terme.
Prenez les moyennes de Tenkansen et Kijunsen comme moyennes à mouvements lents et rapides.
Calculer les bandes de Bollinger pour identifier les consolidations et les écarts.
Calcul de la TSV pour déterminer l'énergie de volume
Calculer le RSI pour identifier les conditions de surachat et de survente
Conditions d'entrée:
Conditions de sortie:
Le système à moyenne mobile double capte les tendances à court et à long terme
RSI évite d'acheter des zones surachetées et de vendre des zones survendues
TSV assure un volume suffisant pour soutenir la tendance
Les bandes de Bollinger identifient les points clés de rupture
La combinaison d'indicateurs aide à filtrer les fausses éruptions
Les systèmes d'AM sont sujets à de faux signaux, doivent être filtrés avec d'autres indicateurs
Les paramètres RSI doivent être optimisés, sinon ils peuvent manquer les points d'achat/de vente
Le TSV est également très sensible aux paramètres, nécessite des tests attentifs
La rupture de la bande supérieure BB peut être une fausse rupture, nécessite une vérification
Difficulté d'optimisation de nombreux indicateurs, risque de surajustement
Des données de train/essai insuffisantes peuvent entraîner un ajustement de la courbe
Testez plus de périodes pour trouver les meilleures combinaisons de paramètres
Essayez d'autres indicateurs comme MACD, KD pour remplacer ou combiner avec RSI
Utilisez l' analyse de marche vers l' avant pour optimiser les paramètres
Ajouter un stop loss pour contrôler les pertes de transaction unique
Considérez des modèles d'apprentissage automatique pour aider à la prédiction des signaux
Ajustez les paramètres pour différents marchés, ne pas trop adapter à un seul paramètre
Cette stratégie capture les tendances à long et à court terme en utilisant des moyennes mobiles doubles et filtre les signaux avec RSI, TSV, Bollinger Bands et plus encore. L'avantage est de négocier en ligne avec la dynamique haussière à long terme. Mais elle comporte également des risques de faux signaux, nécessitant un ajustement supplémentaire des paramètres et un arrêt des pertes pour réduire les risques. Dans l'ensemble, la combinaison de suivi de tendance et de réversion moyenne donne de bons résultats dans les tendances haussières à long terme, mais les paramètres doivent être ajustés pour différents marchés.
/*backtest start: 2022-10-23 00:00:00 end: 2023-10-29 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // @version=4 // Credits // "Vwap with period" code which used in this strategy to calculate the leadLine was written by "neolao" active on https://tr.tradingview.com/u/neolao/ // "TSV" code which used in this strategy was written by "liw0" active on https://www.tradingview.com/u/liw0. The code is corrected by "vitelot" December 2018. // "Vidya" code which used in this strategy was written by "everget" active on https://tr.tradingview.com/u/everget/ strategy("HYE Combo Market [Strategy] (Vwap Mean Reversion + Trend Hunter)", overlay = true, initial_capital = 1000, default_qty_value = 100, default_qty_type = strategy.percent_of_equity, commission_value = 0.025) //Strategy inputs source = input(title = "Source", defval = close, group = "Mean Reversion Strategy Inputs") smallcumulativePeriod = input(title = "Small VWAP", defval = 8, group = "Mean Reversion Strategy Inputs") bigcumulativePeriod = input(title = "Big VWAP", defval = 10, group = "Mean Reversion Strategy Inputs") meancumulativePeriod = input(title = "Mean VWAP", defval = 50, group = "Mean Reversion Strategy Inputs") percentBelowToBuy = input(title = "Percent below to buy %", defval = 2, group = "Mean Reversion Strategy Inputs") rsiPeriod = input(title = "Rsi Period", defval = 2, group = "Mean Reversion Strategy Inputs") rsiEmaPeriod = input(title = "Rsi Ema Period", defval = 5, group = "Mean Reversion Strategy Inputs") rsiLevelforBuy = input(title = "Maximum Rsi Level for Buy", defval = 30, group = "Mean Reversion Strategy Inputs") slowtenkansenPeriod = input(9, minval=1, title="Slow Tenkan Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs") slowkijunsenPeriod = input(13, minval=1, title="Slow Kijun Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs") fasttenkansenPeriod = input(3, minval=1, title="Fast Tenkan Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs") fastkijunsenPeriod = input(7, minval=1, title="Fast Kijun Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs") BBlength = input(20, minval=1, title= "Bollinger Band Length", group = "Trend Hunter Strategy Inputs") BBmult = input(2.0, minval=0.001, maxval=50, title="Bollinger Band StdDev", group = "Trend Hunter Strategy Inputs") tsvlength = input(20, minval=1, title="TSV Length", group = "Trend Hunter Strategy Inputs") tsvemaperiod = input(7, minval=1, title="TSV Ema Length", group = "Trend Hunter Strategy Inputs") length = input(title="Vidya Length", type=input.integer, defval=20, group = "Trend Hunter Strategy Inputs") src = input(title="Vidya Source", type=input.source, defval= hl2 , group = "Trend Hunter Strategy Inputs") // Vidya Calculation getCMO(src, length) => mom = change(src) upSum = sum(max(mom, 0), length) downSum = sum(-min(mom, 0), length) out = (upSum - downSum) / (upSum + downSum) out cmo = abs(getCMO(src, length)) alpha = 2 / (length + 1) vidya = 0.0 vidya := src * alpha * cmo + nz(vidya[1]) * (1 - alpha * cmo) // Make input options that configure backtest date range startDate = input(title="Start Date", type=input.integer, defval=1, minval=1, maxval=31, group = "Strategy Date Range") startMonth = input(title="Start Month", type=input.integer, defval=1, minval=1, maxval=12, group = "Strategy Date Range") startYear = input(title="Start Year", type=input.integer, defval=2000, minval=1800, maxval=2100, group = "Strategy Date Range") endDate = input(title="End Date", type=input.integer, defval=31, minval=1, maxval=31, group = "Strategy Date Range") endMonth = input(title="End Month", type=input.integer, defval=12, minval=1, maxval=12, group = "Strategy Date Range") endYear = input(title="End Year", type=input.integer, defval=2021, minval=1800, maxval=2100, group = "Strategy Date Range") inDateRange = true // Mean Reversion Strategy Calculation typicalPriceS = (high + low + close) / 3 typicalPriceVolumeS = typicalPriceS * volume cumulativeTypicalPriceVolumeS = sum(typicalPriceVolumeS, smallcumulativePeriod) cumulativeVolumeS = sum(volume, smallcumulativePeriod) smallvwapValue = cumulativeTypicalPriceVolumeS / cumulativeVolumeS typicalPriceB = (high + low + close) / 3 typicalPriceVolumeB = typicalPriceB * volume cumulativeTypicalPriceVolumeB = sum(typicalPriceVolumeB, bigcumulativePeriod) cumulativeVolumeB = sum(volume, bigcumulativePeriod) bigvwapValue = cumulativeTypicalPriceVolumeB / cumulativeVolumeB typicalPriceM = (high + low + close) / 3 typicalPriceVolumeM = typicalPriceM * volume cumulativeTypicalPriceVolumeM = sum(typicalPriceVolumeM, meancumulativePeriod) cumulativeVolumeM = sum(volume, meancumulativePeriod) meanvwapValue = cumulativeTypicalPriceVolumeM / cumulativeVolumeM rsiValue = rsi(source, rsiPeriod) rsiEMA = ema(rsiValue, rsiEmaPeriod) buyMA = ((100 - percentBelowToBuy) / 100) * bigvwapValue[0] inTrade = strategy.position_size > 0 notInTrade = strategy.position_size <= 0 if(crossunder(smallvwapValue, buyMA) and rsiEMA < rsiLevelforBuy and close < meanvwapValue and inDateRange and notInTrade) strategy.entry("BUY-M", strategy.long) if(close > meanvwapValue or not inDateRange) strategy.close("BUY-M") // Trend Hunter Strategy Calculation // Slow Tenkan Sen Calculation typicalPriceTS = (high + low + close) / 3 typicalPriceVolumeTS = typicalPriceTS * volume cumulativeTypicalPriceVolumeTS = sum(typicalPriceVolumeTS, slowtenkansenPeriod) cumulativeVolumeTS = sum(volume, slowtenkansenPeriod) slowtenkansenvwapValue = cumulativeTypicalPriceVolumeTS / cumulativeVolumeTS // Slow Kijun Sen Calculation typicalPriceKS = (high + low + close) / 3 typicalPriceVolumeKS = typicalPriceKS * volume cumulativeTypicalPriceVolumeKS = sum(typicalPriceVolumeKS, slowkijunsenPeriod) cumulativeVolumeKS = sum(volume, slowkijunsenPeriod) slowkijunsenvwapValue = cumulativeTypicalPriceVolumeKS / cumulativeVolumeKS // Fast Tenkan Sen Calculation typicalPriceTF = (high + low + close) / 3 typicalPriceVolumeTF = typicalPriceTF * volume cumulativeTypicalPriceVolumeTF = sum(typicalPriceVolumeTF, fasttenkansenPeriod) cumulativeVolumeTF = sum(volume, fasttenkansenPeriod) fasttenkansenvwapValue = cumulativeTypicalPriceVolumeTF / cumulativeVolumeTF // Fast Kijun Sen Calculation typicalPriceKF = (high + low + close) / 3 typicalPriceVolumeKF = typicalPriceKS * volume cumulativeTypicalPriceVolumeKF = sum(typicalPriceVolumeKF, fastkijunsenPeriod) cumulativeVolumeKF = sum(volume, fastkijunsenPeriod) fastkijunsenvwapValue = cumulativeTypicalPriceVolumeKF / cumulativeVolumeKF // Slow LeadLine Calculation lowesttenkansen_s = lowest(slowtenkansenvwapValue, slowtenkansenPeriod) highesttenkansen_s = highest(slowtenkansenvwapValue, slowtenkansenPeriod) lowestkijunsen_s = lowest(slowkijunsenvwapValue, slowkijunsenPeriod) highestkijunsen_s = highest(slowkijunsenvwapValue, slowkijunsenPeriod) slowtenkansen = avg(lowesttenkansen_s, highesttenkansen_s) slowkijunsen = avg(lowestkijunsen_s, highestkijunsen_s) slowleadLine = avg(slowtenkansen, slowkijunsen) // Fast LeadLine Calculation lowesttenkansen_f = lowest(fasttenkansenvwapValue, fasttenkansenPeriod) highesttenkansen_f = highest(fasttenkansenvwapValue, fasttenkansenPeriod) lowestkijunsen_f = lowest(fastkijunsenvwapValue, fastkijunsenPeriod) highestkijunsen_f = highest(fastkijunsenvwapValue, fastkijunsenPeriod) fasttenkansen = avg(lowesttenkansen_f, highesttenkansen_f) fastkijunsen = avg(lowestkijunsen_f, highestkijunsen_f) fastleadLine = avg(fasttenkansen, fastkijunsen) // BBleadLine Calculation BBleadLine = avg(fastleadLine, slowleadLine) // Bollinger Band Calculation basis = sma(BBleadLine, BBlength) dev = BBmult * stdev(BBleadLine, BBlength) upper = basis + dev lower = basis - dev // TSV Calculation tsv = sum(close>close[1]?volume*(close-close[1]):close<close[1]?volume*(close-close[1]):0,tsvlength) tsvema = ema(tsv, tsvemaperiod) // Rules for Entry & Exit if(fastleadLine > fastleadLine[1] and slowleadLine > slowleadLine[1] and tsv > 0 and tsv > tsvema and close > upper and close > vidya and inDateRange and notInTrade) strategy.entry("BUY-T", strategy.long) if((fastleadLine < fastleadLine[1] and slowleadLine < slowleadLine[1]) or not inDateRange) strategy.close("BUY-T") // Plots plot(meanvwapValue, title="MEAN VWAP", linewidth=2, color=color.yellow) //plot(vidya, title="VIDYA", linewidth=2, color=color.green) //colorsettingS = input(title="Solid Color Slow Leadline", defval=false, type=input.bool) //plot(slowleadLine, title = "Slow LeadLine", color = colorsettingS ? color.aqua : slowleadLine > slowleadLine[1] ? color.green : color.red, linewidth=3) //colorsettingF = input(title="Solid Color Fast Leadline", defval=false, type=input.bool) //plot(fastleadLine, title = "Fast LeadLine", color = colorsettingF ? color.orange : fastleadLine > fastleadLine[1] ? color.green : color.red, linewidth=3) //p1 = plot(upper, "Upper BB", color=#2962FF) //p2 = plot(lower, "Lower BB", color=#2962FF) //fill(p1, p2, title = "Background", color=color.blue) //plot(smallvwapValue, color=#13C425, linewidth=2) //plot(bigvwapValue, color=#CA1435, linewidth=2)