Les ressources ont été chargées... Je charge...

Tendance dynamique à la suite d'une stratégie

Auteur:ChaoZhang est là., Date: 2023-12-11 15:43:42 Je vous en prie.
Les étiquettes:

img

Résumé

L'idée principale de cette stratégie est de suivre dynamiquement les tendances du marché en achetant lorsque la tendance est à la hausse et en vendant lorsque la tendance est à la baisse.

La logique de la stratégie

Cette stratégie utilise divers indicateurs techniques pour déterminer la direction de la tendance. Premièrement, elle calcule un canal de prix, avec les limites supérieures et inférieures basées sur la moyenne mobile simple de clôture et un paramètre d'entrée. Ensuite, elle calcule la moyenne mobile Hull modifiée, qui est considérée comme meilleure pour décrire les tendances. En outre, l'indicateur de régression linéaire est également calculé. Elle génère des signaux d'achat lorsque la HMA modifiée traverse au-dessus de la ligne de régression linéaire, et des signaux de vente lorsqu'elle traverse en dessous. Cela permet de suivre dynamiquement les changements de tendance.

Pour réduire les faux signaux, la stratégie intègre également plusieurs filtres, tels que l'utilisation de l'EMA pour déterminer si elle est dans une tendance à la baisse, et un indicateur de fenêtre pour vérifier la divergence du RSI.

Pour les entrées et sorties, la stratégie enregistre le prix de la dernière position ouverte, et définit les pourcentages de profit et de stop-loss. Par exemple, si le dernier prix d'entrée long est de 100 $, il peut définir l'objectif de profit à 102 $ et le prix de stop-loss à 95 $. Cela permet de suivre dynamiquement les tendances.

Analyse des avantages

Cette stratégie présente les avantages suivants:

  1. Le suivi dynamique des changements de tendance peut facilement capter les mouvements directionnels à plus long terme.
  2. L'utilisation de plusieurs filtres réduit le bruit et évite les sur-échanges pendant les marchés agités.
  3. L'ajustement automatique des niveaux d'arrêt des pertes et de prise de profit permet de suivre la tendance.
  4. Les paramètres peuvent être optimisés par backtesting pour trouver automatiquement la meilleure combinaison.

Analyse des risques

Cette stratégie comporte également certains risques:

  1. Il n'est toujours pas possible d'éviter complètement d'être pris dans des renversements de tendance, qui peuvent entraîner des pertes flottantes plus importantes lorsque les tendances s'inversent.
  2. Des paramètres incorrects peuvent entraîner une mauvaise performance de la stratégie.
  3. Un temps de traitement de données long peut entraîner des retards de signal. Il est nécessaire d'optimiser le calcul de l'indicateur pour qu'il soit le plus réel possible.

Pour contrôler les risques, on peut définir un stop loss, utiliser des trailing stops ou des options pour verrouiller les bénéfices.

Directions d'optimisation

Cette stratégie peut être améliorée dans les domaines suivants:

  1. Testez des combinaisons de plusieurs indicateurs pour trouver des moyens plus fiables de déterminer les tendances.
  2. Ajustez les plages de paramètres pour trouver les paramètres optimaux.
  3. Optimiser les filtres de signal pour trouver un équilibre entre la réduction du bruit et le retard.
  4. Essayez des approches d'apprentissage automatique pour générer automatiquement des règles de trading.

Lors de l'optimisation, le backtesting et le trading papier doivent être largement utilisés pour évaluer la qualité et la stabilité du signal.

Conclusion

Dans l'ensemble, il s'agit d'une stratégie de suivi de tendance décente. Il utilise plusieurs indicateurs pour évaluer les tendances, met en place des filtres pour réduire les faux signaux et peut ajuster automatiquement les arrêts et les cibles pour suivre les tendances. Avec un réglage approprié des paramètres, il peut facilement capturer les tendances à moyen et long terme. Les prochaines étapes consisteraient à trouver des paramètres optimaux et à continuer à valider et à améliorer la stratégie.


/*backtest
start: 2023-12-03 00:00:00
end: 2023-12-06 00:00:00
period: 3m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © RafaelZioni

//@version=4
strategy(title = " BTC 15 min", overlay = true, pyramiding=1,initial_capital = 10000, default_qty_type= strategy.percent_of_equity, default_qty_value = 20, calc_on_order_fills=false, slippage=0,commission_type=strategy.commission.percent,commission_value=0.075)
strat_dir_input = input(title="Strategy Direction", defval="all", options=["long", "short", "all"])
strat_dir_value = strat_dir_input == "long" ? strategy.direction.long : strat_dir_input == "short" ? strategy.direction.short : strategy.direction.all
strategy.risk.allow_entry_in(strat_dir_value)
price = close
length8 = input(30,title = 'length of channel')
upmult = input(title = 'upper percent',type=input.float, step=0.1, defval=5)
lowmult = input(title = 'lower percent',type=input.float, step=0.1, defval=5)

basis = sma(close, length8)

vup = upmult * price / 100
vlow = lowmult * price / 100

upper = basis + vup
lower = basis - vlow
plot(basis, color=color.red)


//
fastLength = input(3, title="Fast filter length ", minval=1)
slowLength = input(21,title="Slow filter length",  minval=1)
source=close
v1=ema(source,fastLength)
v2=ema(source,slowLength)
//

leng=1
p1=close[1]

len55 = 10
//taken from https://www.tradingview.com/script/Ql1FjjfX-security-free-MTF-example-JD/
HTF = input("1D", type=input.resolution)
ti = change( time(HTF) ) != 0
T_c = fixnan( ti ? close : na )

vrsi = rsi(cum(change(T_c) * volume), leng)
pp=wma(vrsi,len55)

d=(vrsi[1]-pp[1])
len100 = 10
x=ema(d,len100)
//
zx=x/-1
col=zx > 0? color.lime : color.orange

//

tf10 = input("1", title = "Timeframe", type = input.resolution, options = ["1", "5", "15", "30", "60","120", "240","360","720", "D", "W"])

length = input(50, title = "Period", type = input.integer)
shift = input(1, title = "Shift", type = input.integer)

hma(_src, _length)=>
    wma((2 * wma(_src, _length / 2)) - wma(_src, _length), round(sqrt(_length)))
    
hma3(_src, _length)=>
    p = length/2
    wma(wma(close,p/3)*3 - wma(close,p/2) - wma(close,p),p)

b =security(syminfo.tickerid, tf10, hma3(close[1], length)[shift])
//plot(a,color=color.gray)
//plot(b,color=color.yellow)
close_price = close[0]
len = input(25)

linear_reg = linreg(close_price, len, 0)




buy=crossover(linear_reg, b) 
sell=crossunder(linear_reg, b) or crossunder(close[1],upper)
//

src2=low
src3=high
Min =input(15)
leni = timeframe.isintraday and timeframe.multiplier >= 1 ? 
   Min / timeframe.multiplier * 7 : 
   timeframe.isintraday and timeframe.multiplier < 60 ? 
   60 / timeframe.multiplier * 24 * 7 : 7

l1 = wma(src2,leni)
h1 = wma(src3,leni)
//
m=(h1+l1)/2
//
len5 = 100

src5=m

//
multi = 2

mean = ema(src5, len5)  
stddev = multi * stdev(src5, len5)  
b5 = mean + stddev
s5 = mean - stddev


var bool long = na
var bool short = na

long :=crossover(src5, s5) 
short :=  crossunder(src5, b5)

var float last_open_long = na
var float last_open_short = na

last_open_long := long ? close : nz(last_open_long[1])
last_open_short := short ? close : nz(last_open_short[1])


entry_value =last_open_long
entry_value1=last_open_short

r=100
//
highb = highest(entry_value1, r)  
lowb = lowest(entry_value, r)  
d5 = highb - lowb  
me = (highb + lowb) / 2  
h4 = highb - d5 * 0.236  
c3 = highb - d5 * 0.382  
c4 = highb - d5 * 0.618  
l4 = highb - d5 * 0.764  
//
col2 = close >= me ? color.lime : color.red
       
p5 = plot(upper, color=col2)
p2 = plot(lower, color=col2)
fill(p5, p2,color=col2)
// Conditions

longCond = bool(na)
shortCond = bool(na)
longCond := crossover(zx,0) or buy 
shortCond := sell

// Count your long short conditions for more control with Pyramiding

sectionLongs = 0
sectionLongs := nz(sectionLongs[1])
sectionShorts = 0
sectionShorts := nz(sectionShorts[1])

if longCond
    sectionLongs := sectionLongs + 1
    sectionShorts := 0
    sectionShorts

if shortCond
    sectionLongs := 0
    sectionShorts := sectionShorts + 1
    sectionShorts

// Pyramiding

pyrl = 1


// These check to see your signal and cross references it against the pyramiding settings above

longCondition = longCond and sectionLongs <= pyrl
shortCondition = shortCond and sectionShorts <= pyrl

// Get the price of the last opened long or short

last_open_longCondition = float(na)
last_open_shortCondition = float(na)
last_open_longCondition := longCondition ? open : nz(last_open_longCondition[1])
last_open_shortCondition := shortCondition ? open : nz(last_open_shortCondition[1])

// Check if your last postion was a long or a short

last_longCondition = float(na)
last_shortCondition = float(na)
last_longCondition := longCondition ? time : nz(last_longCondition[1])
last_shortCondition := shortCondition ? time : nz(last_shortCondition[1])

in_longCondition = last_longCondition > last_shortCondition
in_shortCondition = last_shortCondition > last_longCondition

// Take profit

isTPl = true
//isTPs = input(false, "Take Profit Short")
tp = input(2, "Exit Profit %", type=input.float)
long_tp = isTPl and crossover(high, (1 + tp / 100) * last_open_longCondition) and longCondition == 0 and in_longCondition == 1
//short_tp = isTPs and crossunder(low, (1 - tp / 100) * last_open_shortCondition) and 
   //shortCondition == 0 and in_shortCondition == 1

// Stop Loss

isSLl = input(true,"buy Loss Long")
//isSLs = input(false, "buy Loss Short")
sl = 0.0
sl := input(5, " rebuy %", type=input.float)
long_sl = isSLl and crossunder(low, (1 - sl / 100) * last_open_longCondition) and 
   longCondition == 0 and in_longCondition == 1
//short_sl = isSLs and crossover(high, (1 + sl / 100) * last_open_shortCondition) and 
   //shortCondition == 0 and in_shortCondition == 1

//
// Conditions

longCond5 = bool(na)
shortCond5 = bool(na)
longCond5 := longCondition
shortCond5 := long_tp

// 

sectionLongs5 = 0
sectionLongs5 := nz(sectionLongs5[1])
sectionShorts5 = 0
sectionShorts5 := nz(sectionShorts5[1])

if longCond5
    sectionLongs5 := sectionLongs5 + 1
    sectionShorts5 := 0
    sectionShorts5

if shortCond5
    sectionLongs5 := 0
    sectionShorts5 := sectionShorts5 + 1
    sectionShorts5

// 

pyr5 = 1


longCondition5 = longCond5 and sectionLongs5 <= pyr5
shortCondition5 = shortCond5 and sectionShorts5 <= pyr5

// Get the price of the last opened long or short

last_open_longCondition5 = float(na)
last_open_shortCondition5 = float(na)
last_open_longCondition5 := longCondition5 ? open : nz(last_open_longCondition5[1])
last_open_shortCondition5 := shortCondition5 ? open : nz(last_open_shortCondition5[1])

last_longCondition5 = float(na)
last_shortCondition5 = float(na)
last_longCondition5 := longCondition5 ? time : nz(last_longCondition5[1])
last_shortCondition5 := shortCondition5 ? time : nz(last_shortCondition5[1])

in_longCondition5 = last_longCondition5 > last_shortCondition5
in_shortCondition5 = last_shortCondition5 > last_longCondition5
//
filter=input(true)
g(v, p) => round(v * (pow(10, p))) / pow(10, p)
risk     = input(100)
leverage = input(1)
c = g((strategy.equity * leverage / open) * (risk / 100), 4)

//
l =(v1 > v2 or filter == false ) and longCondition or long_sl
//
//l = longCondition or long_sl
s=shortCondition5  
if l 
    strategy.entry("buy", strategy.long,c)
if s 
    strategy.entry("sell", strategy.short,c)


per(pcnt) =>
    strategy.position_size != 0 ? round(pcnt / 100 * strategy.position_avg_price / syminfo.mintick) : float(na)
stoploss=input(title=" stop loss", defval=5, minval=0.01)
los = per(stoploss)
q1=input(title=" qty_percent1", defval=50, minval=1)
q2=input(title=" qty_percent2", defval=50, minval=1)

tp10=input(title=" Take profit1", defval=1, minval=0.01)
tp20=input(title=" Take profit2", defval=2, minval=0.01)

strategy.exit("x1", qty_percent = q1, profit = per(tp10), loss = los)
strategy.exit("x2", qty_percent = q2, profit = per(tp20), loss = los)


Plus de