Strategi ini terutama memanfaatkan prinsip crossover rata-rata bergerak, dikombinasikan dengan sinyal pembalikan indikator RSI dan algoritma crossover rata-rata bergerak ganda khusus untuk menerapkan perdagangan tren. Strategi ini melacak dua rata-rata bergerak dari periode yang berbeda, dengan MA yang lebih cepat melacak tren jangka pendek dan MA yang lebih lambat melacak tren jangka panjang. Ketika MA yang lebih cepat melintasi MA yang lebih lambat ke atas, itu menandakan tren naik dan kesempatan untuk membeli. Ketika MA yang lebih cepat melintasi di bawah MA yang lebih lambat, itu menandakan akhir tren jangka pendek dan kesempatan untuk menutup posisi.
Menghitung dua kelompok rata-rata bergerak VWAP dengan parameter yang berbeda, yang mewakili tren jangka panjang dan jangka pendek masing-masing.
Ambil rata-rata Tenkansen dan Kijunsen sebagai rata-rata bergerak lambat dan cepat.
Menghitung Bollinger Bands untuk mengidentifikasi konsolidasi dan breakout.
Menghitung TSV untuk menentukan energi volume
Menghitung RSI untuk mengidentifikasi kondisi overbought dan oversold
Ketentuan masuk:
Kondisi keluar:
Sistem rata-rata bergerak ganda menangkap tren jangka panjang dan jangka pendek
RSI menghindari membeli zona overbought dan menjual zona oversold
TSV memastikan volume yang cukup untuk mendukung tren
Bollinger Bands mengidentifikasi titik-titik penting dari penembusan
Kombinasi indikator membantu menyaring terobosan palsu
Sistem MA rentan terhadap sinyal palsu, perlu disaring dengan indikator lain
Parameter RSI perlu dioptimalkan, jika tidak mungkin kehilangan titik beli/jual
TSV juga sangat sensitif terhadap parameter, membutuhkan pengujian yang cermat
Pecahkan BB band atas mungkin palsu breakout, perlu verifikasi
Sulit untuk mengoptimalkan banyak indikator, risiko overfit
Data kereta api/ujian yang tidak cukup dapat menyebabkan penyesuaian kurva
Uji lebih banyak periode untuk menemukan kombinasi parameter terbaik
Cobalah indikator lain seperti MACD, KD untuk mengganti atau menggabungkan dengan RSI
Menggunakan analisis berjalan maju untuk optimasi parameter
Tambahkan stop loss untuk mengendalikan kerugian perdagangan tunggal
Pertimbangkan model pembelajaran mesin untuk membantu prediksi sinyal
Sesuaikan parameter untuk pasar yang berbeda, jangan terlalu cocok dengan satu parameter set
Strategi ini menangkap tren jangka panjang dan jangka pendek menggunakan rata-rata bergerak ganda, dan menyaring sinyal dengan RSI, TSV, Bollinger Bands dan banyak lagi. Keuntungannya adalah perdagangan sesuai dengan momentum kenaikan jangka panjang. Tetapi juga membawa risiko sinyal palsu, yang membutuhkan penyesuaian parameter lebih lanjut dan stop loss untuk mengurangi risiko. Secara keseluruhan, menggabungkan trend berikut dan reversi rata-rata menghasilkan hasil yang baik dalam tren kenaikan jangka panjang, tetapi parameter perlu disesuaikan untuk pasar yang berbeda.
/*backtest start: 2022-10-23 00:00:00 end: 2023-10-29 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // @version=4 // Credits // "Vwap with period" code which used in this strategy to calculate the leadLine was written by "neolao" active on https://tr.tradingview.com/u/neolao/ // "TSV" code which used in this strategy was written by "liw0" active on https://www.tradingview.com/u/liw0. The code is corrected by "vitelot" December 2018. // "Vidya" code which used in this strategy was written by "everget" active on https://tr.tradingview.com/u/everget/ strategy("HYE Combo Market [Strategy] (Vwap Mean Reversion + Trend Hunter)", overlay = true, initial_capital = 1000, default_qty_value = 100, default_qty_type = strategy.percent_of_equity, commission_value = 0.025) //Strategy inputs source = input(title = "Source", defval = close, group = "Mean Reversion Strategy Inputs") smallcumulativePeriod = input(title = "Small VWAP", defval = 8, group = "Mean Reversion Strategy Inputs") bigcumulativePeriod = input(title = "Big VWAP", defval = 10, group = "Mean Reversion Strategy Inputs") meancumulativePeriod = input(title = "Mean VWAP", defval = 50, group = "Mean Reversion Strategy Inputs") percentBelowToBuy = input(title = "Percent below to buy %", defval = 2, group = "Mean Reversion Strategy Inputs") rsiPeriod = input(title = "Rsi Period", defval = 2, group = "Mean Reversion Strategy Inputs") rsiEmaPeriod = input(title = "Rsi Ema Period", defval = 5, group = "Mean Reversion Strategy Inputs") rsiLevelforBuy = input(title = "Maximum Rsi Level for Buy", defval = 30, group = "Mean Reversion Strategy Inputs") slowtenkansenPeriod = input(9, minval=1, title="Slow Tenkan Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs") slowkijunsenPeriod = input(13, minval=1, title="Slow Kijun Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs") fasttenkansenPeriod = input(3, minval=1, title="Fast Tenkan Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs") fastkijunsenPeriod = input(7, minval=1, title="Fast Kijun Sen VWAP Line Length", group = "Trend Hunter Strategy Inputs") BBlength = input(20, minval=1, title= "Bollinger Band Length", group = "Trend Hunter Strategy Inputs") BBmult = input(2.0, minval=0.001, maxval=50, title="Bollinger Band StdDev", group = "Trend Hunter Strategy Inputs") tsvlength = input(20, minval=1, title="TSV Length", group = "Trend Hunter Strategy Inputs") tsvemaperiod = input(7, minval=1, title="TSV Ema Length", group = "Trend Hunter Strategy Inputs") length = input(title="Vidya Length", type=input.integer, defval=20, group = "Trend Hunter Strategy Inputs") src = input(title="Vidya Source", type=input.source, defval= hl2 , group = "Trend Hunter Strategy Inputs") // Vidya Calculation getCMO(src, length) => mom = change(src) upSum = sum(max(mom, 0), length) downSum = sum(-min(mom, 0), length) out = (upSum - downSum) / (upSum + downSum) out cmo = abs(getCMO(src, length)) alpha = 2 / (length + 1) vidya = 0.0 vidya := src * alpha * cmo + nz(vidya[1]) * (1 - alpha * cmo) // Make input options that configure backtest date range startDate = input(title="Start Date", type=input.integer, defval=1, minval=1, maxval=31, group = "Strategy Date Range") startMonth = input(title="Start Month", type=input.integer, defval=1, minval=1, maxval=12, group = "Strategy Date Range") startYear = input(title="Start Year", type=input.integer, defval=2000, minval=1800, maxval=2100, group = "Strategy Date Range") endDate = input(title="End Date", type=input.integer, defval=31, minval=1, maxval=31, group = "Strategy Date Range") endMonth = input(title="End Month", type=input.integer, defval=12, minval=1, maxval=12, group = "Strategy Date Range") endYear = input(title="End Year", type=input.integer, defval=2021, minval=1800, maxval=2100, group = "Strategy Date Range") inDateRange = true // Mean Reversion Strategy Calculation typicalPriceS = (high + low + close) / 3 typicalPriceVolumeS = typicalPriceS * volume cumulativeTypicalPriceVolumeS = sum(typicalPriceVolumeS, smallcumulativePeriod) cumulativeVolumeS = sum(volume, smallcumulativePeriod) smallvwapValue = cumulativeTypicalPriceVolumeS / cumulativeVolumeS typicalPriceB = (high + low + close) / 3 typicalPriceVolumeB = typicalPriceB * volume cumulativeTypicalPriceVolumeB = sum(typicalPriceVolumeB, bigcumulativePeriod) cumulativeVolumeB = sum(volume, bigcumulativePeriod) bigvwapValue = cumulativeTypicalPriceVolumeB / cumulativeVolumeB typicalPriceM = (high + low + close) / 3 typicalPriceVolumeM = typicalPriceM * volume cumulativeTypicalPriceVolumeM = sum(typicalPriceVolumeM, meancumulativePeriod) cumulativeVolumeM = sum(volume, meancumulativePeriod) meanvwapValue = cumulativeTypicalPriceVolumeM / cumulativeVolumeM rsiValue = rsi(source, rsiPeriod) rsiEMA = ema(rsiValue, rsiEmaPeriod) buyMA = ((100 - percentBelowToBuy) / 100) * bigvwapValue[0] inTrade = strategy.position_size > 0 notInTrade = strategy.position_size <= 0 if(crossunder(smallvwapValue, buyMA) and rsiEMA < rsiLevelforBuy and close < meanvwapValue and inDateRange and notInTrade) strategy.entry("BUY-M", strategy.long) if(close > meanvwapValue or not inDateRange) strategy.close("BUY-M") // Trend Hunter Strategy Calculation // Slow Tenkan Sen Calculation typicalPriceTS = (high + low + close) / 3 typicalPriceVolumeTS = typicalPriceTS * volume cumulativeTypicalPriceVolumeTS = sum(typicalPriceVolumeTS, slowtenkansenPeriod) cumulativeVolumeTS = sum(volume, slowtenkansenPeriod) slowtenkansenvwapValue = cumulativeTypicalPriceVolumeTS / cumulativeVolumeTS // Slow Kijun Sen Calculation typicalPriceKS = (high + low + close) / 3 typicalPriceVolumeKS = typicalPriceKS * volume cumulativeTypicalPriceVolumeKS = sum(typicalPriceVolumeKS, slowkijunsenPeriod) cumulativeVolumeKS = sum(volume, slowkijunsenPeriod) slowkijunsenvwapValue = cumulativeTypicalPriceVolumeKS / cumulativeVolumeKS // Fast Tenkan Sen Calculation typicalPriceTF = (high + low + close) / 3 typicalPriceVolumeTF = typicalPriceTF * volume cumulativeTypicalPriceVolumeTF = sum(typicalPriceVolumeTF, fasttenkansenPeriod) cumulativeVolumeTF = sum(volume, fasttenkansenPeriod) fasttenkansenvwapValue = cumulativeTypicalPriceVolumeTF / cumulativeVolumeTF // Fast Kijun Sen Calculation typicalPriceKF = (high + low + close) / 3 typicalPriceVolumeKF = typicalPriceKS * volume cumulativeTypicalPriceVolumeKF = sum(typicalPriceVolumeKF, fastkijunsenPeriod) cumulativeVolumeKF = sum(volume, fastkijunsenPeriod) fastkijunsenvwapValue = cumulativeTypicalPriceVolumeKF / cumulativeVolumeKF // Slow LeadLine Calculation lowesttenkansen_s = lowest(slowtenkansenvwapValue, slowtenkansenPeriod) highesttenkansen_s = highest(slowtenkansenvwapValue, slowtenkansenPeriod) lowestkijunsen_s = lowest(slowkijunsenvwapValue, slowkijunsenPeriod) highestkijunsen_s = highest(slowkijunsenvwapValue, slowkijunsenPeriod) slowtenkansen = avg(lowesttenkansen_s, highesttenkansen_s) slowkijunsen = avg(lowestkijunsen_s, highestkijunsen_s) slowleadLine = avg(slowtenkansen, slowkijunsen) // Fast LeadLine Calculation lowesttenkansen_f = lowest(fasttenkansenvwapValue, fasttenkansenPeriod) highesttenkansen_f = highest(fasttenkansenvwapValue, fasttenkansenPeriod) lowestkijunsen_f = lowest(fastkijunsenvwapValue, fastkijunsenPeriod) highestkijunsen_f = highest(fastkijunsenvwapValue, fastkijunsenPeriod) fasttenkansen = avg(lowesttenkansen_f, highesttenkansen_f) fastkijunsen = avg(lowestkijunsen_f, highestkijunsen_f) fastleadLine = avg(fasttenkansen, fastkijunsen) // BBleadLine Calculation BBleadLine = avg(fastleadLine, slowleadLine) // Bollinger Band Calculation basis = sma(BBleadLine, BBlength) dev = BBmult * stdev(BBleadLine, BBlength) upper = basis + dev lower = basis - dev // TSV Calculation tsv = sum(close>close[1]?volume*(close-close[1]):close<close[1]?volume*(close-close[1]):0,tsvlength) tsvema = ema(tsv, tsvemaperiod) // Rules for Entry & Exit if(fastleadLine > fastleadLine[1] and slowleadLine > slowleadLine[1] and tsv > 0 and tsv > tsvema and close > upper and close > vidya and inDateRange and notInTrade) strategy.entry("BUY-T", strategy.long) if((fastleadLine < fastleadLine[1] and slowleadLine < slowleadLine[1]) or not inDateRange) strategy.close("BUY-T") // Plots plot(meanvwapValue, title="MEAN VWAP", linewidth=2, color=color.yellow) //plot(vidya, title="VIDYA", linewidth=2, color=color.green) //colorsettingS = input(title="Solid Color Slow Leadline", defval=false, type=input.bool) //plot(slowleadLine, title = "Slow LeadLine", color = colorsettingS ? color.aqua : slowleadLine > slowleadLine[1] ? color.green : color.red, linewidth=3) //colorsettingF = input(title="Solid Color Fast Leadline", defval=false, type=input.bool) //plot(fastleadLine, title = "Fast LeadLine", color = colorsettingF ? color.orange : fastleadLine > fastleadLine[1] ? color.green : color.red, linewidth=3) //p1 = plot(upper, "Upper BB", color=#2962FF) //p2 = plot(lower, "Lower BB", color=#2962FF) //fill(p1, p2, title = "Background", color=color.blue) //plot(smallvwapValue, color=#13C425, linewidth=2) //plot(bigvwapValue, color=#CA1435, linewidth=2)