Sumber daya yang dimuat... Pemuatan...

Tren Dinamis Mengikuti Strategi

Penulis:ChaoZhang, Tanggal: 2023-12-11 15:43:42
Tag:

img

Gambaran umum

Ide utama dari strategi ini adalah untuk melacak tren pasar secara dinamis dengan membeli ketika tren naik dan menjual ketika tren turun. Ini menggabungkan beberapa indikator teknis untuk menentukan arah tren, seperti regresi linier, Hull Moving Average modifikasi, dll.

Logika Strategi

Strategi ini menggunakan berbagai indikator teknis untuk menentukan arah tren. Pertama, ia menghitung saluran harga, dengan batas atas dan bawah berdasarkan rata-rata bergerak sederhana penutupan dan parameter input. Kemudian, ia menghitung Hull Moving Average yang dimodifikasi, yang dianggap lebih baik dalam menggambarkan tren. Selain itu, indikator regresi linier juga dihitung. Ini menghasilkan sinyal beli ketika HMA yang dimodifikasi melintasi di atas garis regresi linier, dan sinyal jual saat melintasi di bawah. Ini memungkinkan melacak perubahan tren secara dinamis.

Untuk mengurangi sinyal palsu, strategi ini juga menggabungkan beberapa filter, seperti menggunakan EMA untuk menentukan apakah itu berada dalam tren penurunan, dan indikator jendela untuk memeriksa divergensi RSI. Filter ini membantu menghindari mengambil perdagangan selama pasar bergolak, sisi.

Untuk entri dan keluar, strategi mencatat harga posisi terbuka terakhir, dan menetapkan persentase mengambil keuntungan dan stop loss. Misalnya, jika harga entri panjang terakhir adalah $ 100, itu dapat menetapkan target mengambil keuntungan sebesar $ 102, dan harga stop loss sebesar $ 95. Ini mencapai pelacakan tren yang dinamis.

Analisis Keuntungan

Strategi ini memiliki keuntungan berikut:

  1. Mengikuti perubahan tren secara dinamis dapat dengan lancar menangkap pergerakan arah jangka panjang.
  2. Menggunakan beberapa filter mengurangi kebisingan dan menghindari perdagangan berlebihan selama pasar bergolak.
  3. Mengatur secara otomatis stop loss dan mengambil tingkat keuntungan mencapai tren berikut.
  4. Parameter dapat dioptimalkan melalui backtesting untuk menemukan kombinasi terbaik secara otomatis.

Analisis Risiko

Ada juga beberapa risiko dengan strategi ini:

  1. Masih tidak dapat sepenuhnya menghindari terjebak dalam pembalikan tren, yang dapat menyebabkan kerugian mengambang yang lebih besar ketika tren berbalik.
  2. Pengaturan parameter yang tidak benar dapat menyebabkan kinerja strategi yang buruk.
  3. Waktu pemrosesan data yang panjang dapat menyebabkan keterlambatan sinyal.

Untuk mengendalikan risiko, seseorang dapat mengatur stop loss, menggunakan trailing stop atau opsi untuk mengunci keuntungan. Juga, pengujian ekstensif kombinasi parameter diperlukan untuk menemukan rentang yang dapat diandalkan. Akhirnya, waktu eksekusi indikator harus dipantau untuk memastikan sinyal yang tepat waktu.

Arahan Optimasi

Strategi ini dapat ditingkatkan dalam hal berikut:

  1. Uji kombinasi dari lebih banyak indikator untuk menemukan cara yang lebih dapat diandalkan untuk menentukan tren.
  2. Sesuaikan rentang parameter untuk menemukan parameter optimal.
  3. Mengoptimalkan filter sinyal untuk menemukan keseimbangan antara pengurangan kebisingan dan keterlambatan.
  4. Cobalah pendekatan pembelajaran mesin untuk secara otomatis menghasilkan aturan perdagangan.

Selama optimasi, backtesting dan perdagangan kertas harus digunakan secara ekstensif untuk mengevaluasi kualitas sinyal dan stabilitas.

Kesimpulan

Secara keseluruhan, ini adalah strategi tren yang baik. Ini menggunakan beberapa indikator untuk mengukur tren, mengatur filter untuk mengurangi sinyal palsu, dan dapat secara otomatis menyesuaikan berhenti dan target untuk mengikuti tren. Dengan penyesuaian parameter yang tepat, dapat dengan lancar menangkap tren jangka menengah hingga panjang. Langkah selanjutnya adalah menemukan parameter optimal, dan terus memvalidasi dan meningkatkan strategi.


/*backtest
start: 2023-12-03 00:00:00
end: 2023-12-06 00:00:00
period: 3m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © RafaelZioni

//@version=4
strategy(title = " BTC 15 min", overlay = true, pyramiding=1,initial_capital = 10000, default_qty_type= strategy.percent_of_equity, default_qty_value = 20, calc_on_order_fills=false, slippage=0,commission_type=strategy.commission.percent,commission_value=0.075)
strat_dir_input = input(title="Strategy Direction", defval="all", options=["long", "short", "all"])
strat_dir_value = strat_dir_input == "long" ? strategy.direction.long : strat_dir_input == "short" ? strategy.direction.short : strategy.direction.all
strategy.risk.allow_entry_in(strat_dir_value)
price = close
length8 = input(30,title = 'length of channel')
upmult = input(title = 'upper percent',type=input.float, step=0.1, defval=5)
lowmult = input(title = 'lower percent',type=input.float, step=0.1, defval=5)

basis = sma(close, length8)

vup = upmult * price / 100
vlow = lowmult * price / 100

upper = basis + vup
lower = basis - vlow
plot(basis, color=color.red)


//
fastLength = input(3, title="Fast filter length ", minval=1)
slowLength = input(21,title="Slow filter length",  minval=1)
source=close
v1=ema(source,fastLength)
v2=ema(source,slowLength)
//

leng=1
p1=close[1]

len55 = 10
//taken from https://www.tradingview.com/script/Ql1FjjfX-security-free-MTF-example-JD/
HTF = input("1D", type=input.resolution)
ti = change( time(HTF) ) != 0
T_c = fixnan( ti ? close : na )

vrsi = rsi(cum(change(T_c) * volume), leng)
pp=wma(vrsi,len55)

d=(vrsi[1]-pp[1])
len100 = 10
x=ema(d,len100)
//
zx=x/-1
col=zx > 0? color.lime : color.orange

//

tf10 = input("1", title = "Timeframe", type = input.resolution, options = ["1", "5", "15", "30", "60","120", "240","360","720", "D", "W"])

length = input(50, title = "Period", type = input.integer)
shift = input(1, title = "Shift", type = input.integer)

hma(_src, _length)=>
    wma((2 * wma(_src, _length / 2)) - wma(_src, _length), round(sqrt(_length)))
    
hma3(_src, _length)=>
    p = length/2
    wma(wma(close,p/3)*3 - wma(close,p/2) - wma(close,p),p)

b =security(syminfo.tickerid, tf10, hma3(close[1], length)[shift])
//plot(a,color=color.gray)
//plot(b,color=color.yellow)
close_price = close[0]
len = input(25)

linear_reg = linreg(close_price, len, 0)




buy=crossover(linear_reg, b) 
sell=crossunder(linear_reg, b) or crossunder(close[1],upper)
//

src2=low
src3=high
Min =input(15)
leni = timeframe.isintraday and timeframe.multiplier >= 1 ? 
   Min / timeframe.multiplier * 7 : 
   timeframe.isintraday and timeframe.multiplier < 60 ? 
   60 / timeframe.multiplier * 24 * 7 : 7

l1 = wma(src2,leni)
h1 = wma(src3,leni)
//
m=(h1+l1)/2
//
len5 = 100

src5=m

//
multi = 2

mean = ema(src5, len5)  
stddev = multi * stdev(src5, len5)  
b5 = mean + stddev
s5 = mean - stddev


var bool long = na
var bool short = na

long :=crossover(src5, s5) 
short :=  crossunder(src5, b5)

var float last_open_long = na
var float last_open_short = na

last_open_long := long ? close : nz(last_open_long[1])
last_open_short := short ? close : nz(last_open_short[1])


entry_value =last_open_long
entry_value1=last_open_short

r=100
//
highb = highest(entry_value1, r)  
lowb = lowest(entry_value, r)  
d5 = highb - lowb  
me = (highb + lowb) / 2  
h4 = highb - d5 * 0.236  
c3 = highb - d5 * 0.382  
c4 = highb - d5 * 0.618  
l4 = highb - d5 * 0.764  
//
col2 = close >= me ? color.lime : color.red
       
p5 = plot(upper, color=col2)
p2 = plot(lower, color=col2)
fill(p5, p2,color=col2)
// Conditions

longCond = bool(na)
shortCond = bool(na)
longCond := crossover(zx,0) or buy 
shortCond := sell

// Count your long short conditions for more control with Pyramiding

sectionLongs = 0
sectionLongs := nz(sectionLongs[1])
sectionShorts = 0
sectionShorts := nz(sectionShorts[1])

if longCond
    sectionLongs := sectionLongs + 1
    sectionShorts := 0
    sectionShorts

if shortCond
    sectionLongs := 0
    sectionShorts := sectionShorts + 1
    sectionShorts

// Pyramiding

pyrl = 1


// These check to see your signal and cross references it against the pyramiding settings above

longCondition = longCond and sectionLongs <= pyrl
shortCondition = shortCond and sectionShorts <= pyrl

// Get the price of the last opened long or short

last_open_longCondition = float(na)
last_open_shortCondition = float(na)
last_open_longCondition := longCondition ? open : nz(last_open_longCondition[1])
last_open_shortCondition := shortCondition ? open : nz(last_open_shortCondition[1])

// Check if your last postion was a long or a short

last_longCondition = float(na)
last_shortCondition = float(na)
last_longCondition := longCondition ? time : nz(last_longCondition[1])
last_shortCondition := shortCondition ? time : nz(last_shortCondition[1])

in_longCondition = last_longCondition > last_shortCondition
in_shortCondition = last_shortCondition > last_longCondition

// Take profit

isTPl = true
//isTPs = input(false, "Take Profit Short")
tp = input(2, "Exit Profit %", type=input.float)
long_tp = isTPl and crossover(high, (1 + tp / 100) * last_open_longCondition) and longCondition == 0 and in_longCondition == 1
//short_tp = isTPs and crossunder(low, (1 - tp / 100) * last_open_shortCondition) and 
   //shortCondition == 0 and in_shortCondition == 1

// Stop Loss

isSLl = input(true,"buy Loss Long")
//isSLs = input(false, "buy Loss Short")
sl = 0.0
sl := input(5, " rebuy %", type=input.float)
long_sl = isSLl and crossunder(low, (1 - sl / 100) * last_open_longCondition) and 
   longCondition == 0 and in_longCondition == 1
//short_sl = isSLs and crossover(high, (1 + sl / 100) * last_open_shortCondition) and 
   //shortCondition == 0 and in_shortCondition == 1

//
// Conditions

longCond5 = bool(na)
shortCond5 = bool(na)
longCond5 := longCondition
shortCond5 := long_tp

// 

sectionLongs5 = 0
sectionLongs5 := nz(sectionLongs5[1])
sectionShorts5 = 0
sectionShorts5 := nz(sectionShorts5[1])

if longCond5
    sectionLongs5 := sectionLongs5 + 1
    sectionShorts5 := 0
    sectionShorts5

if shortCond5
    sectionLongs5 := 0
    sectionShorts5 := sectionShorts5 + 1
    sectionShorts5

// 

pyr5 = 1


longCondition5 = longCond5 and sectionLongs5 <= pyr5
shortCondition5 = shortCond5 and sectionShorts5 <= pyr5

// Get the price of the last opened long or short

last_open_longCondition5 = float(na)
last_open_shortCondition5 = float(na)
last_open_longCondition5 := longCondition5 ? open : nz(last_open_longCondition5[1])
last_open_shortCondition5 := shortCondition5 ? open : nz(last_open_shortCondition5[1])

last_longCondition5 = float(na)
last_shortCondition5 = float(na)
last_longCondition5 := longCondition5 ? time : nz(last_longCondition5[1])
last_shortCondition5 := shortCondition5 ? time : nz(last_shortCondition5[1])

in_longCondition5 = last_longCondition5 > last_shortCondition5
in_shortCondition5 = last_shortCondition5 > last_longCondition5
//
filter=input(true)
g(v, p) => round(v * (pow(10, p))) / pow(10, p)
risk     = input(100)
leverage = input(1)
c = g((strategy.equity * leverage / open) * (risk / 100), 4)

//
l =(v1 > v2 or filter == false ) and longCondition or long_sl
//
//l = longCondition or long_sl
s=shortCondition5  
if l 
    strategy.entry("buy", strategy.long,c)
if s 
    strategy.entry("sell", strategy.short,c)


per(pcnt) =>
    strategy.position_size != 0 ? round(pcnt / 100 * strategy.position_avg_price / syminfo.mintick) : float(na)
stoploss=input(title=" stop loss", defval=5, minval=0.01)
los = per(stoploss)
q1=input(title=" qty_percent1", defval=50, minval=1)
q2=input(title=" qty_percent2", defval=50, minval=1)

tp10=input(title=" Take profit1", defval=1, minval=0.01)
tp20=input(title=" Take profit2", defval=2, minval=0.01)

strategy.exit("x1", qty_percent = q1, profit = per(tp10), loss = los)
strategy.exit("x2", qty_percent = q2, profit = per(tp20), loss = los)


Lebih banyak