資源の読み込みに... 荷物...

移動平均値に基づく平均逆転取引戦略

作者: リン・ハーンチャオチャン,日付: 2023年10月26日 15:38:14
タグ:

img

概要

平均逆転取引戦略は,取引決定を行うために移動平均値からの価格偏差に基づいています.価格が移動平均値を下回りまたは上回りするとポジションを設定し,価格が戻るとポジションを閉じることで,価格の短期偏差と長期逆転パターンを平均値に利用します.

戦略の論理

戦略は,まず,一定の期間における移動平均値を計算し,長期間の価格傾向を表します.その後,移動平均値からの価格偏差に基づいて,ポジションのタイミングとサイズを決定します.

価格が一定のパーセントで移動平均値を下回ると,価格が長期的傾向から逸脱することを示す.この場合,逸脱が拡大するにつれて長ポジションは徐々に大きくなって構築される.価格が移動平均値を超えて反転すると,平均値への逆転を示唆し,長ポジションは利益を得るために閉鎖される.

同様に,価格が移動平均値を超えると,ショートポジションが構築されます.価格が移動平均値に戻ると,ショートポジションは利益で閉鎖されます.

利点分析

  1. 移動平均値のトレンド識別能力を活用して 株式価格の長期均衡傾向を追跡し 主要なトレンド方向性を特定する.

  2. ポジションをスケールすることで 平均コストを下げ より良いエントリー価格を得ます

  3. 平均逆転の異なるレベルでの利益を確保し,リスクを低減するために段階的な利益を取ることを採用する.

  4. コントロール・ポジションの固定パーセントのサイズ化により,単一の取引損失のサイズを制限する.

  5. 柔軟なパラメータ設定,例えば移動平均期と位置のサイズ設定は,異なる製品によって異なります.

リスク分析

  1. 価格が振動するときに頻繁にストップ・ロスをします.ストップ・ロスの範囲を広げたり,他のフィルターを追加したりできます.

  2. 強いトレンドは移動平均を突破し,平均逆転で閉じることができず,トレンド強度指標によって識別されたポジションサイズを減らす可能性があります.

  3. パラメータの設定が正しくない場合,過剰なエントリーやストップが発生する可能性があります. 市場状況に基づいて慎重なバックテストと調整が必要です.

  4. 高い取引頻度は,実質的な取引コストにつながります.パラメータ最適化ではコスト要因を考慮する必要があります.

改善 の 方向

  1. 移動平均期間を最適化し,製品の特性に合わせて調整する.

  2. リスクとリターンをバランスするためにポジションのサイズを最適化します

  3. 他の技術的なフィルターを追加して,不必要な取引を避ける.

  4. 市場変動レベルに基づいてポジションサイズを調整するための変動指標を組み込む.

  5. リスクを低減し 収益を上げるために 利益目標のスケーリングを導入します

結論

平均逆転戦略は,移動平均値からの偏差を入力し,逆転で利益を得ることによって,株式の均衡逆転傾向を利用する.適切なパラメータ調節とフィルターにより,市場変化に適応し,リスク制御の下で良い収益を達成することができる.この戦略は,トレンドフォローとリスク管理の両方を組み込み,投資家に研究し適用する価値があります.


/*backtest
start: 2022-10-19 00:00:00
end: 2023-10-25 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
strategy("YJ Mean Reversion", overlay=true)
//Was designed firstly to work on an index like the S&P 500 , which over time tends to go up in value. 
//Avoid trading too frequently (e.g. Daily, Weekly), to avoid getting eaten by fees. 
//If you change the underlying asset, or time frame, tweaking the moving average may be necessary. 
//Can work with a starting capital of just $1000, optimise the settings as necessary. 
//Accepts floating point values for the amount of units to purchase (e.g. Bitcoin ). 
//If price of units exceeds available capital, script will cancel the buy. 
//Adjusted the input parameters to be more intuitive.

//input variables
movingAverage = input(title="Moving Average (bars)", type=input.integer, defval=28, minval=1, maxval=1000)
//riskPercentage = input(title="Amount to Risk (%)", type=input.integer, defval=1, minval=1, maxval=50)
deviation = input(title="Deviation Increment (%)", type=input.float, defval=5, minval=0.01, maxval=100) / 100
unitsLevel1 = input(title="Level 1 (units)", type=input.float, defval=1, minval=0.0001, maxval=10000)
unitsLevel2 = input(title="Level 2 (units)", type=input.float, defval=2, minval=0.0001, maxval=10000)
unitsLevel3 = input(title="Level 3 (units)", type=input.float, defval=4, minval=0.0001, maxval=10000)
unitsLevel4 = input(title="Level 4 (units)", type=input.float, defval=8, minval=0.0001, maxval=10000)
unitsLevel5 = input(title="Level 5 (units)", type=input.float, defval=16, minval=0.0001, maxval=10000)

//moving average and ma slope (use on weekly chart)
ma = sma(close, movingAverage)
//sl = ma > ma[4]

//units to buy
//amount = riskPercentage / 100 * (strategy.initial_capital + strategy.netprofit)
//units = floor(amount / close)

//mode 1
//strategy.order("buy", true, 1, when = (close < 0.95 * ma) and (strategy.position_size < 10))
//strategy.order("sell", false, strategy.position_size, when = (close > 1.05 * ma) and (strategy.position_size > 0))

//mode 2
//strategy.order("buy", true, 1, when = close < 0.8 * ma)
//strategy.order("sell", false, strategy.position_size, when = (close > 310) and (strategy.position_size > 0))

//mode 3
//strategy.order("buy", true, 1, when = (close < 0.95 * ma) and (close > 0.9 * ma))
//strategy.order("buy", true, 2, when = (close < 0.9 * ma) and (close > 0.85 * ma))
//strategy.order("buy", true, 4, when = (close < 0.85 * ma) and (close > 0.8 * ma))
//strategy.order("buy", true, 8, when = (close < 0.8 * ma) and (close > 0.75 * ma))
//strategy.order("buy", true, 16, when = (close < 0.75 * ma))
//strategy.order("sell", false, strategy.position_size, when = (close > 310) and (strategy.position_size > 0))

//mode 4
//strategy.order("buy", true, 1, when = (close < 0.98 * ma) and (close > 0.96 * ma) and (sl))
//strategy.order("buy", true, 2, when = (close < 0.96 * ma) and (close > 0.94 * ma) and (sl))
//strategy.order("buy", true, 4, when = (close < 0.94 * ma) and (close > 0.92 * ma) and (sl))
//strategy.order("buy", true, 8, when = (close < 0.92 * ma) and (close > 0.90 * ma) and (sl))
//strategy.order("buy", true, 16, when = (close < 0.90 * ma) and (sl))
//strategy.order("sell", false, strategy.position_size, when = (close > 310) and (strategy.position_size > 0))

//mode 5
//strategy.order("buy", true, 1, when = (close < 0.95 * ma) and (close > 0.9 * ma))
//strategy.order("buy", true, 2, when = (close < 0.9 * ma) and (close > 0.85 * ma))
//strategy.order("buy", true, 4, when = (close < 0.85 * ma) and (close > 0.8 * ma))
//strategy.order("buy", true, 8, when = (close < 0.8 * ma) and (close > 0.75 * ma))
//strategy.order("buy", true, 16, when = (close < 0.75 * ma))

//strategy.order("sell", false, 1, when = (close > 1.05 * ma) and (close < 1.1 * ma) and (strategy.position_size > 0))
//strategy.order("sell", false, 2, when = (close > 1.1 * ma) and (close < 1.15 * ma) and (strategy.position_size > 0))
//strategy.order("sell", false, 4, when = (close > 1.15 * ma) and (close < 1.2 * ma) and (strategy.position_size > 0))
//strategy.order("sell", false, 8, when = (close > 1.2 * ma) and (close < 1.25 * ma) and (strategy.position_size > 0))
//strategy.order("sell", false, 16, when = (close > 1.25 * ma) and (close < 1.3 * ma) and (strategy.position_size > 0))

//mode 6
//strategy.order("B1", true, unitsLevel1 * units, when = (close < 0.95 * ma) and (close > 0.9 * ma))
//strategy.order("B2", true, unitsLevel2 * units, when = (close < 0.9 * ma) and (close > 0.85 * ma))
//strategy.order("B3", true, unitsLevel3 * units, when = (close < 0.85 * ma) and (close > 0.8 * ma))
//strategy.order("B4", true, unitsLevel4 * units, when = (close < 0.8 * ma) and (close > 0.75 * ma))
//strategy.order("B5", true, unitsLevel5 * units, when = (close < 0.75 * ma))

//strategy.order("S1", false, unitsLevel1 * units, when = (close > 1.05 * ma) and (close < 1.1 * ma) and (strategy.position_size > 0))
//strategy.order("S2", false, unitsLevel2 * units, when = (close > 1.1 * ma) and (close < 1.15 * ma) and (strategy.position_size > 0))
//strategy.order("S3", false, unitsLevel3 * units, when = (close > 1.15 * ma) and (close < 1.2 * ma) and (strategy.position_size > 0))
//strategy.order("S4", false, unitsLevel4 * units, when = (close > 1.2 * ma) and (close < 1.25 * ma) and (strategy.position_size > 0))
//strategy.order("S5", false, unitsLevel5 * units, when = (close > 1.25 * ma) and (close < 1.3 * ma) and (strategy.position_size > 0))

//mode 7
//strategy.order("B1", true, units, when = (close < 0.95 * ma) and (close > 0.9 * ma))
//strategy.order("B2", true, units, when = (close < 0.9 * ma) and (close > 0.85 * ma))
//strategy.order("B3", true, units, when = (close < 0.85 * ma) and (close > 0.8 * ma))
//strategy.order("B4", true, units, when = (close < 0.8 * ma) and (close > 0.75 * ma))
//strategy.order("B5", true, units, when = (close < 0.75 * ma))

//strategy.order("S1", false, units, when = (close > 1.05 * ma) and (close < 1.1 * ma) and (strategy.position_size > 0))
//strategy.order("S2", false, units, when = (close > 1.1 * ma) and (close < 1.15 * ma) and (strategy.position_size > 0))
//strategy.order("S3", false, units, when = (close > 1.15 * ma) and (close < 1.2 * ma) and (strategy.position_size > 0))
//strategy.order("S4", false, units, when = (close > 1.2 * ma) and (close < 1.25 * ma) and (strategy.position_size > 0))
//strategy.order("S5", false, units, when = (close > 1.25 * ma) and (close < 1.3 * ma) and (strategy.position_size > 0))

//banding calculations
aH = 1.0 - deviation
aL = aH - deviation
bH = aL
bL = bH - deviation
cH = bL
cL = cH - deviation
dH = cL
dL = dH - deviation
eH = dL
strategy.initial_capital = 50000
//mode 8
strategy.order("B1", true, unitsLevel1, when = (close < aH * ma) and (close > aL * ma) and (unitsLevel1 * close < (strategy.initial_capital + strategy.netprofit)))
strategy.order("B2", true, unitsLevel2, when = (close < bH * ma) and (close > bL * ma) and (unitsLevel2 * close < (strategy.initial_capital + strategy.netprofit)))
strategy.order("B3", true, unitsLevel3, when = (close < cH * ma) and (close > cL * ma) and (unitsLevel3 * close < (strategy.initial_capital + strategy.netprofit)))
strategy.order("B4", true, unitsLevel4, when = (close < dH * ma) and (close > dL * ma) and (unitsLevel4 * close < (strategy.initial_capital + strategy.netprofit)))
strategy.order("B5", true, unitsLevel5, when = (close < eH * ma) and (unitsLevel5 * close < (strategy.initial_capital + strategy.netprofit)))

//banding calculations
fL = 1.0 + deviation
fH = fL + deviation
gL = fH
gH = gL + deviation
hL = gH
hH = hL + deviation
iL = hH
iH = iL + deviation
jL = iH

strategy.order("S1", false, unitsLevel1, when = (close > fL * ma) and (close < fH * ma) and (strategy.position_size > 0))
strategy.order("S2", false, unitsLevel2, when = (close > gL * ma) and (close < gH * ma) and (strategy.position_size > 0))
strategy.order("S3", false, unitsLevel3, when = (close > hL * ma) and (close < hH * ma) and (strategy.position_size > 0))
strategy.order("S4", false, unitsLevel4, when = (close > iL * ma) and (close < iH * ma) and (strategy.position_size > 0))
strategy.order("S5", false, unitsLevel5, when = (close > jL * ma) and (strategy.position_size > 0))

plot(ma, color=#666666, linewidth=5)

もっと