이 전략은 kNN (k 가장 가까운 이웃) 기계 학습 알고리즘을 활용하여 시장 추세를 예측하고 그에 따라 길고 짧은 신호를 생성합니다. 역사 데이터, 기술 지표 등 여러 요인을 포괄적으로 고려하여 트레이닝 kNN 모델을 통해 시장 패턴을 동적으로 캡처하여 거래 후 자동 트렌드를 실현합니다.
훈련 데이터를 수집합니다. 폐쇄 가격, 거래량, 그리고 RSI, CCI와 같은 기술적 지표와 같은 역사적 데이터를 수집합니다.
데이터 전처리: 지표값을 0~100 범위로 정상화합니다.
kNN 모델을 훈련하십시오: kNN 모델의 현재 두 가지 특징을 취하고, 이러한 특징 벡터와 역사적 벡터 사이의 유클리드 거리를 계산하고, 거리를 기반으로 가장 가까운 이웃 샘플을 선택하고, 이러한 샘플의 배포를 셀 라벨 (승향 또는 하락) 을 선택하십시오.
예측을 얻으십시오: 가장 가까운 이웃 k의 라벨을 기반으로 현재 시장 트렌드에 대한 예측을 수행하십시오. 예측이 상승하면 긴 신호를 생성하십시오. 예측이 하락하면 짧은 신호를 생성하십시오.
스톱 로스, 포지션 사이즈, 이동 평균 필터를 사용하여 거래합니다.
기계 학습을 통해 수동 개입 없이 기술 패턴을 자동으로 인식합니다.
다양한 기술 지표를 실시간 최적화를 위한 모델 기능으로 선택할 수 있는 유연성
스톱 로스, 포지션 사이즈 같은 엄격한 리스크 제어 메커니즘을 통합합니다.
명료하고 직관적인 스톱 로스 라인을 시각화합니다.
기계 학습에서 예측 오류가 발생할 수 있습니다. 최적화 방법에는 k 값, 특징 벡터, 샘플 시간 범위 등을 적절히 조정하는 것이 포함됩니다.
일방 거래의 잠재적 위험. 버그를 제거하기 위해 코드에서 양방향 거래에 대한 권한을 추가합니다.
부적절한 매개 변수 설정은 오버 트레이딩으로 이어질 수 있습니다.
kNN 입력 기능으로 다양한 유형의 기술 지표를 테스트합니다.
맨해튼 거리 같은 다른 거리 측정법을 시도해보세요.
표본 거리와 분류 품질을 사용하여 위치 크기를 조정합니다.
롤링 최적화를 위해 모델 트레인/테스트 스플릿을 추가합니다.
이 전략은 고전적인 kNN 알고리즘을 사용하여 시장 트렌드 예측을 실현하고 예측 신호를 기반으로 트렌드 다음 거래를 실행합니다. 조정 가능한 매개 변수와 제어 가능한 위험을 갖추고 사용자에게 효과적인 자동 거래 솔루션을 제공합니다. 사용자는 기술 지표 조합, 모델 하이퍼 매개 변수 및 기타를 최적화하여 전략 성능을 지속적으로 향상시킬 수 있습니다.
/*backtest start: 2023-11-07 00:00:00 end: 2023-12-07 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © sosacur01 //@version=5 strategy(title=" kNN-based| Trend Following | Trend Following", overlay=true, pyramiding=1, commission_type=strategy.commission.percent, commission_value=0.2, initial_capital=10000) //========================================== // This script, based on Capissimo's original indicator code, transforms a kNN-based machine learning indicator into a TradingView strategy. // It incorporates a backtest date range filter, on/off controls for long and short positions, a moving average filter, and dynamic risk management for adaptive position sizing. // Credit to Capissimo for the foundational kNN algorithm. //========================================== //BACKTEST RANGE useDateFilter = input.bool(true, title="Filter Date Range of Backtest", group="Backtest Time Period") backtestStartDate = input(timestamp("1 jan 2017"), title="Start Date", group="Backtest Time Period", tooltip="This start date is in the time zone of the exchange " + "where the chart's instrument trades. It doesn't use the time " + "zone of the chart or of your computer.") backtestEndDate = input(timestamp("1 Jul 2100"), title="End Date", group="Backtest Time Period", tooltip="This end date is in the time zone of the exchange " + "where the chart's instrument trades. It doesn't use the time " + "zone of the chart or of your computer.") inTradeWindow = true if not inTradeWindow and inTradeWindow[1] strategy.cancel_all() strategy.close_all(comment="Date Range Exit") //-------------------------------------- //LONG/SHORT POSITION ON/OFF INPUT LongPositions = input.bool(title='On/Off Long Postion', defval=true, group="Long & Short Position") ShortPositions = input.bool(title='On/Off Short Postion', defval=true, group="Long & Short Position") //-------------------------------------- // kNN-based Strategy (FX and Crypto) // Description: // This strategy uses a classic machine learning algorithm - k Nearest Neighbours (kNN) - // to let you find a prediction for the next (tomorrow's, next month's, etc.) market move. // Being an unsupervised machine learning algorithm, kNN is one of the most simple learning algorithms. // To do a prediction of the next market move, the kNN algorithm uses the historic data, // collected in 3 arrays - feature1, feature2 and directions, - and finds the k-nearest // neighbours of the current indicator(s) values. // The two dimensional kNN algorithm just has a look on what has happened in the past when // the two indicators had a similar level. It then looks at the k nearest neighbours, // sees their state and thus classifies the current point. // The kNN algorithm offers a framework to test all kinds of indicators easily to see if they // have got any *predictive value*. One can easily add cog, wpr and others. // Note: TradingViews's playback feature helps to see this strategy in action. // Warning: Signals ARE repainting. // Style tags: Trend Following, Trend Analysis // Asset class: Equities, Futures, ETFs, Currencies and Commodities // Dataset: FX Minutes/Hours+++/Days //-- Preset Dates int startdate = timestamp('01 Jan 2000 00:00:00 GMT+10') int stopdate = timestamp('31 Dec 2025 23:45:00 GMT+10') //-- Inputs StartDate = input (startdate, 'Start Date', group="kNN-based Inputs") StopDate = input (stopdate, 'Stop Date', group="kNN-based Inputs") Indicator = input.string('RSI', 'Indicator', ['RSI','ROC','CCI','Volume','All'], group="kNN-based Inputs") ShortWinow = input.int (8, 'Short Period [1..n]', 1, group="kNN-based Inputs") LongWindow = input.int (29, 'Long Period [2..n]', 2, group="kNN-based Inputs") BaseK = input.int (400, 'Base No. of Neighbours (K) [5..n]', 5, group="kNN-based Inputs") Filter = input.bool (false, 'Volatility Filter', group="kNN-based Inputs") Bars = input.int (300, 'Bar Threshold [2..5000]', 2, 5000, group="kNN-based Inputs") //-- Constants var int BUY = 1 var int SELL =-1 var int CLEAR = 0 var int k = math.floor(math.sqrt(BaseK)) // k Value for kNN algo //-- Variable // Training data, normalized to the range of [0,...,100] var array<float> feature1 = array.new_float(0) // [0,...,100] var array<float> feature2 = array.new_float(0) // ... var array<int> directions = array.new_int(0) // [-1; +1] // Result data var array<int> predictions = array.new_int(0) var float prediction = 0.0 var array<int> bars = array.new<int>(1, 0) // array used as a container for inter-bar variables // Signals var int signal = CLEAR //-- Functions minimax(float x, int p, float min, float max) => float hi = ta.highest(x, p), float lo = ta.lowest(x, p) (max - min) * (x - lo)/(hi - lo) + min cAqua(int g) => g>9?#0080FFff:g>8?#0080FFe5:g>7?#0080FFcc:g>6?#0080FFb2:g>5?#0080FF99:g>4?#0080FF7f:g>3?#0080FF66:g>2?#0080FF4c:g>1?#0080FF33:#00C0FF19 cPink(int g) => g>9?#FF0080ff:g>8?#FF0080e5:g>7?#FF0080cc:g>6?#FF0080b2:g>5?#FF008099:g>4?#FF00807f:g>3?#FF008066:g>2?#FF00804c:g>1?#FF008033:#FF008019 inside_window(float start, float stop) => time >= start and time <= stop ? true : false //-- Logic bool window = true // 3 pairs of predictor indicators, long and short each float rs = ta.rsi(close, LongWindow), float rf = ta.rsi(close, ShortWinow) float cs = ta.cci(close, LongWindow), float cf = ta.cci(close, ShortWinow) float os = ta.roc(close, LongWindow), float of = ta.roc(close, ShortWinow) float vs = minimax(volume, LongWindow, 0, 99), float vf = minimax(volume, ShortWinow, 0, 99) // TOADD or TOTRYOUT: // ta.cmo(close, LongWindow), ta.cmo(close, ShortWinow) // ta.mfi(close, LongWindow), ta.mfi(close, ShortWinow) // ta.mom(close, LongWindow), ta.mom(close, ShortWinow) float f1 = switch Indicator 'RSI' => rs 'CCI' => cs 'ROC' => os 'Volume' => vs => math.avg(rs, cs, os, vs) float f2 = switch Indicator 'RSI' => rf 'CCI' => cf 'ROC' => of 'Volume' => vf => math.avg(rf, cf, of, vf) // Classification data, what happens on the next bar int class_label = int(math.sign(close[1] - close[0])) // eq. close[1]<close[0] ? SELL: close[1]>close[0] ? BUY : CLEAR // Use particular training period if window // Store everything in arrays. Features represent a square 100 x 100 matrix, // whose row-colum intersections represent class labels, showing historic directions array.push(feature1, f1) array.push(feature2, f2) array.push(directions, class_label) // Ucomment the followng statement (if barstate.islast) and tab everything below // between BOBlock and EOBlock marks to see just the recent several signals gradually // showing up, rather than all the preceding signals //if barstate.islast //==BOBlock // Core logic of the algorithm int size = array.size(directions) float maxdist = -999.0 // Loop through the training arrays, getting distances and corresponding directions. for i=0 to size-1 // Calculate the euclidean distance of current point to all historic points, // here the metric used might as well be a manhattan distance or any other. float d = math.sqrt(math.pow(f1 - array.get(feature1, i), 2) + math.pow(f2 - array.get(feature2, i), 2)) if d > maxdist maxdist := d if array.size(predictions) >= k array.shift(predictions) array.push(predictions, array.get(directions, i)) //==EOBlock // Note: in this setup there's no need for distances array (i.e. array.push(distances, d)), // but the drawback is that a sudden max value may shadow all the subsequent values. // One of the ways to bypass this is to: // 1) store d in distances array, // 2) calculate newdirs = bubbleSort(distances, directions), and then // 3) take a slice with array.slice(newdirs) from the end // Get the overall prediction of k nearest neighbours prediction := array.sum(predictions) bool filter = Filter ? ta.atr(10) > ta.atr(40) : true // filter out by volatility or ex. ta.atr(1) > ta.atr(10)... // Now that we got a prediction for the next market move, we need to make use of this prediction and // trade it. The returns then will show if everything works as predicted. // Over here is a simple long/short interpretation of the prediction, // but of course one could also use the quality of the prediction (+5 or +1) in some sort of way, // ex. for position sizing. bool long = prediction > 0 and filter bool short = prediction < 0 and filter bool clear = not(long and short) if array.get(bars, 0)==Bars // stop by trade duration signal := CLEAR array.set(bars, 0, 0) else array.set(bars, 0, array.get(bars, 0) + 1) signal := long ? BUY : short ? SELL : clear ? CLEAR : nz(signal[1]) int changed = ta.change(signal) bool startLongTrade = changed and signal==BUY bool startShortTrade = changed and signal==SELL // bool endLongTrade = changed and signal==SELL // bool endShortTrade = changed and signal==BUY bool clear_condition = changed and signal==CLEAR //or (changed and signal==SELL) or (changed and signal==BUY) float maxpos = ta.highest(high, 10) float minpos = ta.lowest (low, 10) //----//MA INPUTS MAFilter = input.bool(title='Use MA as Filter', defval=true, group = "MA Inputs") averageType1 = input.string(defval="SMA", group="MA Inputs", title="MA Type", options=["SMA", "EMA", "WMA", "HMA", "RMA", "SWMA", "ALMA", "VWMA", "VWAP"]) averageLength1 = input.int(defval=40, title="MA Length", group="MA Inputs") averageSource1 = input(close, title="MA Source", group="MA Inputs") //MA TYPE MovAvgType1(averageType1, averageSource1, averageLength1) => switch str.upper(averageType1) "SMA" => ta.sma(averageSource1, averageLength1) "EMA" => ta.ema(averageSource1, averageLength1) "WMA" => ta.wma(averageSource1, averageLength1) "HMA" => ta.hma(averageSource1, averageLength1) "RMA" => ta.rma(averageSource1, averageLength1) "SWMA" => ta.swma(averageSource1) "ALMA" => ta.alma(averageSource1, averageLength1, 0.85, 6) "VWMA" => ta.vwma(averageSource1, averageLength1) "VWAP" => ta.vwap(averageSource1) => runtime.error("Moving average type '" + averageType1 + "' not found!"), na // MA COLOR VALUES ma = MovAvgType1(averageType1, averageSource1, averageLength1) ma_plot = close > ma ? color.rgb(54, 111, 56) : color.rgb(54, 111, 56, 52) // MA BUY/SELL CONDITIONS bullish_ma = MAFilter ? close > ma : inTradeWindow bearish_ma = MAFilter ? close < ma : inTradeWindow // MA ALTERNATING PLOT plot(MAFilter ? ma : na, color=ma_plot, title="Moving Average", linewidth=3) //-------------------------------------- //ENTRIES AND EXITS long_entry = if inTradeWindow and startLongTrade and bullish_ma and LongPositions true long_exit = if inTradeWindow and startShortTrade true short_entry = if inTradeWindow and startShortTrade and bearish_ma and ShortPositions true short_exit = if inTradeWindow and startLongTrade true //-------------------------------------- //RISK MANAGEMENT - SL, MONEY AT RISK, POSITION SIZING atrPeriod = input.int(7, "ATR Length", group="Risk Management Inputs") sl_atr_multiplier = input.float(title="Long Position - Stop Loss - ATR Multiplier", defval=2, group="Risk Management Inputs", step=0.5) sl_atr_multiplier_short = input.float(title="Short Position - Stop Loss - ATR Multiplier", defval=2, group="Risk Management Inputs", step=0.5) i_pctStop = input.float(2, title="% of Equity at Risk", step=.5, group="Risk Management Inputs")/100 //ATR VALUE _atr = ta.atr(atrPeriod) //CALCULATE LAST ENTRY PRICE lastEntryPrice = strategy.opentrades.entry_price(strategy.opentrades - 1) //STOP LOSS - LONG POSITIONS var float sl = na //CALCULTE SL WITH ATR AT ENTRY PRICE - LONG POSITION if (strategy.position_size[1] != strategy.position_size) sl := lastEntryPrice - (_atr * sl_atr_multiplier) //IN TRADE - LONG POSITIONS inTrade = strategy.position_size > 0 //PLOT SL - LONG POSITIONS plot(inTrade ? sl : na, color=color.blue, style=plot.style_circles, title="Long Position - Stop Loss") //CALCULATE ORDER SIZE - LONG POSITIONS positionSize = (strategy.equity * i_pctStop) / (_atr * sl_atr_multiplier) //============================================================================================ //STOP LOSS - SHORT POSITIONS var float sl_short = na //CALCULTE SL WITH ATR AT ENTRY PRICE - SHORT POSITIONS if (strategy.position_size[1] != strategy.position_size) sl_short := lastEntryPrice + (_atr * sl_atr_multiplier_short) //IN TRADE SHORT POSITIONS inTrade_short = strategy.position_size < 0 //PLOT SL - SHORT POSITIONS plot(inTrade_short ? sl_short : na, color=color.red, style=plot.style_circles, title="Short Position - Stop Loss") //CALCULATE ORDER - SHORT POSITIONS positionSize_short = (strategy.equity * i_pctStop) / (_atr * sl_atr_multiplier_short) //=============================================== //LONG STRATEGY strategy.entry("Long", strategy.long, comment="Long", when = long_entry and not short_entry, qty=positionSize) if (strategy.position_size > 0) strategy.close("Long", when = (long_exit), comment="Close Long") strategy.exit("Long", stop = sl, comment="Exit Long") //SHORT STRATEGY strategy.entry("Short", strategy.short, comment="Short", when = short_entry and not long_entry, qty=positionSize_short) if (strategy.position_size < 0) strategy.close("Short", when = (short_exit), comment="Close Short") strategy.exit("Short", stop = sl_short, comment="Exit Short") //ONE DIRECTION TRADING COMMAND (BELLOW ONLY ACTIVATE TO CORRECT BUGS) //strategy.risk.allow_entry_in(strategy.direction.long)