가우스 채널 적응 이동 평균 전략 (Gaussian Channel Adaptive Moving Average Strategy) 은 가우스 필터링 기법과 적응 매개 변수 설정을 활용한 양적 거래 전략이다. 존 에일러스가 제안한 가우스 필터 이론을 기반으로, 이 전략은 여러 기하급수적 이동 평균 계산을 가격 데이터에 적용하여 원활하고 적응적인 거래 신호를 생성한다. 전략의 핵심은 가우스 필터링 가격에서 필터링 된 진정한 범위를 더하고 빼면서 얻는 상부 및 하부 대역으로 동적으로 조정된 가격 채널을 구축하는 것이다. 가격이 상부 대역을 넘으면 긴 포지션을 입력하고, 하부 대역을 넘으면 짧은 포지션을 입력한다. 또한, 전략은 시간 기간 설정을 도입하여 전략 실행의 시작 및 종료 시간을 유연하게 설정하여 실용성을 향상시킨다.
가우스 채널 적응 이동 평균 전략의 원칙은 다음과 같습니다.
가우스 채널 적응 이동 평균 전략은 다음과 같은 장점을 가지고 있습니다.
많은 장점에도 불구하고 가우스 채널 적응 이동 평균 전략은 여전히 특정 위험을 초래합니다.
가우스 채널 적응 이동 평균 전략의 최적화 방향은 다음과 같습니다.
가우스 채널 적응 이동 평균 전략 (Gaussian Channel Adaptive Moving Average Strategy) 은 가우스 필터링과 적응 매개 변수에 기반을 둔 양적 거래 전략으로, 동적으로 가격 채널을 구성하여 원활하고 신뢰할 수있는 거래 신호를 생성합니다. 이 전략은 강력한 적응력, 좋은 트렌드 추적 능력, 높은 매끄럽기, 큰 유연성 및 강력한 실용성 등의 장점이 있습니다. 그러나 매개 변수 설정, 갑작스러운 이벤트, 과잉 적합성 및 중재 등 위험도 있습니다. 미래에 이 전략은 동적 매개 변수 최적화, 멀티 팩터 융합, 위치 관리 최적화 및 멀티 인스트루먼트 조정을 통해 더욱 정밀화 및 향상 될 수 있습니다.
/*backtest start: 2023-03-22 00:00:00 end: 2024-03-27 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy(title="Gaussian Channel Strategy v1.0", overlay=true, calc_on_every_tick=false, initial_capital=10000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1) // Date condition inputs startDate = input(title="Date Start", type=input.time, defval=timestamp("1 Jan 2018 00:00 +0000"), group="Dates") endDate = input(title="Date End", type=input.time, defval=timestamp("31 Dec 2060 23:59 +0000"), group="Dates") timeCondition = true // This study is an experiment utilizing the Ehlers Gaussian Filter technique combined with lag reduction techniques and true range to analyze trend activity. // Gaussian filters, as Ehlers explains it, are simply exponential moving averages applied multiple times. // First, beta and alpha are calculated based on the sampling period and number of poles specified. The maximum number of poles available in this script is 9. // Next, the data being analyzed is given a truncation option for reduced lag, which can be enabled with "Reduced Lag Mode". // Then the alpha and source values are used to calculate the filter and filtered true range of the dataset. // Filtered true range with a specified multiplier is then added to and subtracted from the filter, generating a channel. // Lastly, a one pole filter with a N pole alpha is averaged with the filter to generate a faster filter, which can be enabled with "Fast Response Mode". //Custom bar colors are included. //Note: Both the sampling period and number of poles directly affect how much lag the indicator has, and how smooth the output is. // Larger inputs will result in smoother outputs with increased lag, and smaller inputs will have noisier outputs with reduced lag. // For the best results, I recommend not setting the sampling period any lower than the number of poles + 1. Going lower truncates the equation. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Updates: // Huge shoutout to @e2e4mfck for taking the time to improve the calculation method! // -> migrated to v4 // -> pi is now calculated using trig identities rather than being explicitly defined. // -> The filter calculations are now organized into functions rather than being individually defined. // -> Revamped color scheme. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Functions - courtesy of @e2e4mfck //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Filter function f_filt9x (_a, _s, _i) => int _m2 = 0, int _m3 = 0, int _m4 = 0, int _m5 = 0, int _m6 = 0, int _m7 = 0, int _m8 = 0, int _m9 = 0, float _f = .0, _x = (1 - _a) // Weights. // Initial weight _m1 is a pole number and equal to _i _m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0 _m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0 _m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0 _m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0 _m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0 _m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0 _m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0 _m9 := _i == 9 ? 1 : 0 // filter _f := pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * pow(_x, 9) * nz(_f[9]) : 0) //9 var declaration fun f_pole (_a, _s, _i) => _f1 = f_filt9x(_a, _s, 1), _f2 = (_i >= 2 ? f_filt9x(_a, _s, 2) : 0), _f3 = (_i >= 3 ? f_filt9x(_a, _s, 3) : 0) _f4 = (_i >= 4 ? f_filt9x(_a, _s, 4) : 0), _f5 = (_i >= 5 ? f_filt9x(_a, _s, 5) : 0), _f6 = (_i >= 6 ? f_filt9x(_a, _s, 6) : 0) _f7 = (_i >= 2 ? f_filt9x(_a, _s, 7) : 0), _f8 = (_i >= 8 ? f_filt9x(_a, _s, 8) : 0), _f9 = (_i == 9 ? f_filt9x(_a, _s, 9) : 0) _fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na [_fn, _f1] //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Inputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Source src = input(defval=hlc3, title="Source") //Poles int N = input(defval=4, title="Poles", minval=1, maxval=9) //Period int per = input(defval=144, title="Sampling Period", minval=2) //True Range Multiplier float mult = input(defval=1.414, title="Filtered True Range Multiplier", minval=0) //Lag Reduction bool modeLag = input(defval=false, title="Reduced Lag Mode") bool modeFast = input(defval=false, title="Fast Response Mode") //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Definitions //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Beta and Alpha Components beta = (1 - cos(4*asin(1)/per)) / (pow(1.414, 2/N) - 1) alpha = - beta + sqrt(pow(beta, 2) + 2*beta) //Lag lag = (per - 1)/(2*N) //Data srcdata = modeLag ? src + (src - src[lag]) : src trdata = modeLag ? tr(true) + (tr(true) - tr(true)[lag]) : tr(true) //Filtered Values [filtn, filt1] = f_pole(alpha, srcdata, N) [filtntr, filt1tr] = f_pole(alpha, trdata, N) //Lag Reduction filt = modeFast ? (filtn + filt1)/2 : filtn filttr = modeFast ? (filtntr + filt1tr)/2 : filtntr //Bands hband = filt + filttr*mult lband = filt - filttr*mult // Colors color1 = #0aff68 color2 = #00752d color3 = #ff0a5a color4 = #990032 fcolor = filt > filt[1] ? #0aff68 : filt < filt[1] ? #ff0a5a : #cccccc barcolor = (src > src[1]) and (src > filt) and (src < hband) ? #0aff68 : (src > src[1]) and (src >= hband) ? #0aff1b : (src <= src[1]) and (src > filt) ? #00752d : (src < src[1]) and (src < filt) and (src > lband) ? #ff0a5a : (src < src[1]) and (src <= lband) ? #ff0a11 : (src >= src[1]) and (src < filt) ? #990032 : #cccccc //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Outputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Filter Plot filtplot = plot(filt, title="Filter", color=fcolor, linewidth=3) //Band Plots hbandplot = plot(hband, title="Filtered True Range High Band", color=fcolor) lbandplot = plot(lband, title="Filtered True Range Low Band", color=fcolor) //Channel Fill fill(hbandplot, lbandplot, title="Channel Fill", color=fcolor, transp=80) //Bar Color barcolor(barcolor) longCondition = crossover(close, hband) and timeCondition closeAllCondition = crossunder(close, hband) and timeCondition if longCondition strategy.entry("long", strategy.long) if closeAllCondition strategy.close("long")