Strategi ini menggunakan algoritma pembelajaran mesin kNN (k Nearest Neighbors) untuk meramalkan trend pasaran dan menjana isyarat panjang dan pendek dengan sewajarnya. Ia secara komprehensif mempertimbangkan pelbagai faktor seperti data sejarah, penunjuk teknikal, dan sebagainya, secara dinamik menangkap corak pasaran melalui latihan model kNN untuk merealisasikan trend automatik selepas perdagangan.
Mengumpul data latihan: mengumpul data sejarah seperti harga penutupan, jumlah dagangan, serta penunjuk teknikal seperti RSI, CCI dari masa ke masa.
Pemprosesan pra data: mennormalkan nilai penunjuk ke dalam julat 0-100.
Latih model kNN: ambil dua ciri semasa dalam model kNN, mengira jarak Euclidean antara vektor ciri ini dan yang bersejarah, pilih sampel jiran terdekat k berdasarkan jarak, dan label hitung (bullish atau bearish) pengedaran sampel k ini.
Mendapatkan ramalan: membuat ramalan mengenai trend pasaran semasa berdasarkan label k jiran terdekat. Jika ramalan menaik, menghasilkan isyarat panjang. Jika ramalan menurun, menghasilkan isyarat pendek.
Perdagangan menggunakan stop loss, saiz kedudukan, penapis purata bergerak.
Mengenali corak teknikal secara automatik menggunakan pembelajaran mesin tanpa campur tangan manual.
Fleksibiliti untuk memilih penunjuk teknikal yang berbeza sebagai ciri model untuk pengoptimuman masa nyata.
Mengintegrasikan mekanisme kawalan risiko yang ketat seperti stop loss, saiz kedudukan.
Garis stop loss yang dilihat untuk ketelusan dan intuisi.
Kesilapan ramalan mungkin wujud dalam pembelajaran mesin. Kaedah pengoptimuman termasuk menyesuaikan nilai k, vektor ciri, julat masa sampel dengan betul.
Tambah kebenaran untuk perdagangan dua hala dalam kod untuk menghapuskan bug.
Tetapan parameter yang tidak betul boleh membawa kepada overtrading.
Uji pelbagai jenis penunjuk teknikal sebagai ciri input kNN.
Cuba metrik jarak lain seperti jarak Manhattan.
Gunakan jarak sampel atau kualiti klasifikasi untuk menyesuaikan saiz kedudukan.
Tambah pembahagian kereta api model / ujian untuk pengoptimuman gulung.
Strategi ini merealisasikan ramalan trend pasaran menggunakan algoritma kNN klasik dan melaksanakan trend mengikuti perdagangan berdasarkan isyarat ramalan. Ia mempunyai parameter yang boleh disesuaikan dan risiko yang boleh dikawal, menyediakan penyelesaian perdagangan automatik yang berkesan untuk pengguna. Pengguna boleh terus meningkatkan prestasi strategi dengan mengoptimumkan kombinasi penunjuk teknikal, hiperparameter model dan banyak lagi.
/*backtest start: 2023-11-07 00:00:00 end: 2023-12-07 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © sosacur01 //@version=5 strategy(title=" kNN-based| Trend Following | Trend Following", overlay=true, pyramiding=1, commission_type=strategy.commission.percent, commission_value=0.2, initial_capital=10000) //========================================== // This script, based on Capissimo's original indicator code, transforms a kNN-based machine learning indicator into a TradingView strategy. // It incorporates a backtest date range filter, on/off controls for long and short positions, a moving average filter, and dynamic risk management for adaptive position sizing. // Credit to Capissimo for the foundational kNN algorithm. //========================================== //BACKTEST RANGE useDateFilter = input.bool(true, title="Filter Date Range of Backtest", group="Backtest Time Period") backtestStartDate = input(timestamp("1 jan 2017"), title="Start Date", group="Backtest Time Period", tooltip="This start date is in the time zone of the exchange " + "where the chart's instrument trades. It doesn't use the time " + "zone of the chart or of your computer.") backtestEndDate = input(timestamp("1 Jul 2100"), title="End Date", group="Backtest Time Period", tooltip="This end date is in the time zone of the exchange " + "where the chart's instrument trades. It doesn't use the time " + "zone of the chart or of your computer.") inTradeWindow = true if not inTradeWindow and inTradeWindow[1] strategy.cancel_all() strategy.close_all(comment="Date Range Exit") //-------------------------------------- //LONG/SHORT POSITION ON/OFF INPUT LongPositions = input.bool(title='On/Off Long Postion', defval=true, group="Long & Short Position") ShortPositions = input.bool(title='On/Off Short Postion', defval=true, group="Long & Short Position") //-------------------------------------- // kNN-based Strategy (FX and Crypto) // Description: // This strategy uses a classic machine learning algorithm - k Nearest Neighbours (kNN) - // to let you find a prediction for the next (tomorrow's, next month's, etc.) market move. // Being an unsupervised machine learning algorithm, kNN is one of the most simple learning algorithms. // To do a prediction of the next market move, the kNN algorithm uses the historic data, // collected in 3 arrays - feature1, feature2 and directions, - and finds the k-nearest // neighbours of the current indicator(s) values. // The two dimensional kNN algorithm just has a look on what has happened in the past when // the two indicators had a similar level. It then looks at the k nearest neighbours, // sees their state and thus classifies the current point. // The kNN algorithm offers a framework to test all kinds of indicators easily to see if they // have got any *predictive value*. One can easily add cog, wpr and others. // Note: TradingViews's playback feature helps to see this strategy in action. // Warning: Signals ARE repainting. // Style tags: Trend Following, Trend Analysis // Asset class: Equities, Futures, ETFs, Currencies and Commodities // Dataset: FX Minutes/Hours+++/Days //-- Preset Dates int startdate = timestamp('01 Jan 2000 00:00:00 GMT+10') int stopdate = timestamp('31 Dec 2025 23:45:00 GMT+10') //-- Inputs StartDate = input (startdate, 'Start Date', group="kNN-based Inputs") StopDate = input (stopdate, 'Stop Date', group="kNN-based Inputs") Indicator = input.string('RSI', 'Indicator', ['RSI','ROC','CCI','Volume','All'], group="kNN-based Inputs") ShortWinow = input.int (8, 'Short Period [1..n]', 1, group="kNN-based Inputs") LongWindow = input.int (29, 'Long Period [2..n]', 2, group="kNN-based Inputs") BaseK = input.int (400, 'Base No. of Neighbours (K) [5..n]', 5, group="kNN-based Inputs") Filter = input.bool (false, 'Volatility Filter', group="kNN-based Inputs") Bars = input.int (300, 'Bar Threshold [2..5000]', 2, 5000, group="kNN-based Inputs") //-- Constants var int BUY = 1 var int SELL =-1 var int CLEAR = 0 var int k = math.floor(math.sqrt(BaseK)) // k Value for kNN algo //-- Variable // Training data, normalized to the range of [0,...,100] var array<float> feature1 = array.new_float(0) // [0,...,100] var array<float> feature2 = array.new_float(0) // ... var array<int> directions = array.new_int(0) // [-1; +1] // Result data var array<int> predictions = array.new_int(0) var float prediction = 0.0 var array<int> bars = array.new<int>(1, 0) // array used as a container for inter-bar variables // Signals var int signal = CLEAR //-- Functions minimax(float x, int p, float min, float max) => float hi = ta.highest(x, p), float lo = ta.lowest(x, p) (max - min) * (x - lo)/(hi - lo) + min cAqua(int g) => g>9?#0080FFff:g>8?#0080FFe5:g>7?#0080FFcc:g>6?#0080FFb2:g>5?#0080FF99:g>4?#0080FF7f:g>3?#0080FF66:g>2?#0080FF4c:g>1?#0080FF33:#00C0FF19 cPink(int g) => g>9?#FF0080ff:g>8?#FF0080e5:g>7?#FF0080cc:g>6?#FF0080b2:g>5?#FF008099:g>4?#FF00807f:g>3?#FF008066:g>2?#FF00804c:g>1?#FF008033:#FF008019 inside_window(float start, float stop) => time >= start and time <= stop ? true : false //-- Logic bool window = true // 3 pairs of predictor indicators, long and short each float rs = ta.rsi(close, LongWindow), float rf = ta.rsi(close, ShortWinow) float cs = ta.cci(close, LongWindow), float cf = ta.cci(close, ShortWinow) float os = ta.roc(close, LongWindow), float of = ta.roc(close, ShortWinow) float vs = minimax(volume, LongWindow, 0, 99), float vf = minimax(volume, ShortWinow, 0, 99) // TOADD or TOTRYOUT: // ta.cmo(close, LongWindow), ta.cmo(close, ShortWinow) // ta.mfi(close, LongWindow), ta.mfi(close, ShortWinow) // ta.mom(close, LongWindow), ta.mom(close, ShortWinow) float f1 = switch Indicator 'RSI' => rs 'CCI' => cs 'ROC' => os 'Volume' => vs => math.avg(rs, cs, os, vs) float f2 = switch Indicator 'RSI' => rf 'CCI' => cf 'ROC' => of 'Volume' => vf => math.avg(rf, cf, of, vf) // Classification data, what happens on the next bar int class_label = int(math.sign(close[1] - close[0])) // eq. close[1]<close[0] ? SELL: close[1]>close[0] ? BUY : CLEAR // Use particular training period if window // Store everything in arrays. Features represent a square 100 x 100 matrix, // whose row-colum intersections represent class labels, showing historic directions array.push(feature1, f1) array.push(feature2, f2) array.push(directions, class_label) // Ucomment the followng statement (if barstate.islast) and tab everything below // between BOBlock and EOBlock marks to see just the recent several signals gradually // showing up, rather than all the preceding signals //if barstate.islast //==BOBlock // Core logic of the algorithm int size = array.size(directions) float maxdist = -999.0 // Loop through the training arrays, getting distances and corresponding directions. for i=0 to size-1 // Calculate the euclidean distance of current point to all historic points, // here the metric used might as well be a manhattan distance or any other. float d = math.sqrt(math.pow(f1 - array.get(feature1, i), 2) + math.pow(f2 - array.get(feature2, i), 2)) if d > maxdist maxdist := d if array.size(predictions) >= k array.shift(predictions) array.push(predictions, array.get(directions, i)) //==EOBlock // Note: in this setup there's no need for distances array (i.e. array.push(distances, d)), // but the drawback is that a sudden max value may shadow all the subsequent values. // One of the ways to bypass this is to: // 1) store d in distances array, // 2) calculate newdirs = bubbleSort(distances, directions), and then // 3) take a slice with array.slice(newdirs) from the end // Get the overall prediction of k nearest neighbours prediction := array.sum(predictions) bool filter = Filter ? ta.atr(10) > ta.atr(40) : true // filter out by volatility or ex. ta.atr(1) > ta.atr(10)... // Now that we got a prediction for the next market move, we need to make use of this prediction and // trade it. The returns then will show if everything works as predicted. // Over here is a simple long/short interpretation of the prediction, // but of course one could also use the quality of the prediction (+5 or +1) in some sort of way, // ex. for position sizing. bool long = prediction > 0 and filter bool short = prediction < 0 and filter bool clear = not(long and short) if array.get(bars, 0)==Bars // stop by trade duration signal := CLEAR array.set(bars, 0, 0) else array.set(bars, 0, array.get(bars, 0) + 1) signal := long ? BUY : short ? SELL : clear ? CLEAR : nz(signal[1]) int changed = ta.change(signal) bool startLongTrade = changed and signal==BUY bool startShortTrade = changed and signal==SELL // bool endLongTrade = changed and signal==SELL // bool endShortTrade = changed and signal==BUY bool clear_condition = changed and signal==CLEAR //or (changed and signal==SELL) or (changed and signal==BUY) float maxpos = ta.highest(high, 10) float minpos = ta.lowest (low, 10) //----//MA INPUTS MAFilter = input.bool(title='Use MA as Filter', defval=true, group = "MA Inputs") averageType1 = input.string(defval="SMA", group="MA Inputs", title="MA Type", options=["SMA", "EMA", "WMA", "HMA", "RMA", "SWMA", "ALMA", "VWMA", "VWAP"]) averageLength1 = input.int(defval=40, title="MA Length", group="MA Inputs") averageSource1 = input(close, title="MA Source", group="MA Inputs") //MA TYPE MovAvgType1(averageType1, averageSource1, averageLength1) => switch str.upper(averageType1) "SMA" => ta.sma(averageSource1, averageLength1) "EMA" => ta.ema(averageSource1, averageLength1) "WMA" => ta.wma(averageSource1, averageLength1) "HMA" => ta.hma(averageSource1, averageLength1) "RMA" => ta.rma(averageSource1, averageLength1) "SWMA" => ta.swma(averageSource1) "ALMA" => ta.alma(averageSource1, averageLength1, 0.85, 6) "VWMA" => ta.vwma(averageSource1, averageLength1) "VWAP" => ta.vwap(averageSource1) => runtime.error("Moving average type '" + averageType1 + "' not found!"), na // MA COLOR VALUES ma = MovAvgType1(averageType1, averageSource1, averageLength1) ma_plot = close > ma ? color.rgb(54, 111, 56) : color.rgb(54, 111, 56, 52) // MA BUY/SELL CONDITIONS bullish_ma = MAFilter ? close > ma : inTradeWindow bearish_ma = MAFilter ? close < ma : inTradeWindow // MA ALTERNATING PLOT plot(MAFilter ? ma : na, color=ma_plot, title="Moving Average", linewidth=3) //-------------------------------------- //ENTRIES AND EXITS long_entry = if inTradeWindow and startLongTrade and bullish_ma and LongPositions true long_exit = if inTradeWindow and startShortTrade true short_entry = if inTradeWindow and startShortTrade and bearish_ma and ShortPositions true short_exit = if inTradeWindow and startLongTrade true //-------------------------------------- //RISK MANAGEMENT - SL, MONEY AT RISK, POSITION SIZING atrPeriod = input.int(7, "ATR Length", group="Risk Management Inputs") sl_atr_multiplier = input.float(title="Long Position - Stop Loss - ATR Multiplier", defval=2, group="Risk Management Inputs", step=0.5) sl_atr_multiplier_short = input.float(title="Short Position - Stop Loss - ATR Multiplier", defval=2, group="Risk Management Inputs", step=0.5) i_pctStop = input.float(2, title="% of Equity at Risk", step=.5, group="Risk Management Inputs")/100 //ATR VALUE _atr = ta.atr(atrPeriod) //CALCULATE LAST ENTRY PRICE lastEntryPrice = strategy.opentrades.entry_price(strategy.opentrades - 1) //STOP LOSS - LONG POSITIONS var float sl = na //CALCULTE SL WITH ATR AT ENTRY PRICE - LONG POSITION if (strategy.position_size[1] != strategy.position_size) sl := lastEntryPrice - (_atr * sl_atr_multiplier) //IN TRADE - LONG POSITIONS inTrade = strategy.position_size > 0 //PLOT SL - LONG POSITIONS plot(inTrade ? sl : na, color=color.blue, style=plot.style_circles, title="Long Position - Stop Loss") //CALCULATE ORDER SIZE - LONG POSITIONS positionSize = (strategy.equity * i_pctStop) / (_atr * sl_atr_multiplier) //============================================================================================ //STOP LOSS - SHORT POSITIONS var float sl_short = na //CALCULTE SL WITH ATR AT ENTRY PRICE - SHORT POSITIONS if (strategy.position_size[1] != strategy.position_size) sl_short := lastEntryPrice + (_atr * sl_atr_multiplier_short) //IN TRADE SHORT POSITIONS inTrade_short = strategy.position_size < 0 //PLOT SL - SHORT POSITIONS plot(inTrade_short ? sl_short : na, color=color.red, style=plot.style_circles, title="Short Position - Stop Loss") //CALCULATE ORDER - SHORT POSITIONS positionSize_short = (strategy.equity * i_pctStop) / (_atr * sl_atr_multiplier_short) //=============================================== //LONG STRATEGY strategy.entry("Long", strategy.long, comment="Long", when = long_entry and not short_entry, qty=positionSize) if (strategy.position_size > 0) strategy.close("Long", when = (long_exit), comment="Close Long") strategy.exit("Long", stop = sl, comment="Exit Long") //SHORT STRATEGY strategy.entry("Short", strategy.short, comment="Short", when = short_entry and not long_entry, qty=positionSize_short) if (strategy.position_size < 0) strategy.close("Short", when = (short_exit), comment="Close Short") strategy.exit("Short", stop = sl_short, comment="Exit Short") //ONE DIRECTION TRADING COMMAND (BELLOW ONLY ACTIVATE TO CORRECT BUGS) //strategy.risk.allow_entry_in(strategy.direction.long)