A estratégia de média móvel adaptativa do canal de Gauss é uma estratégia de negociação quantitativa que utiliza técnicas de filtragem de Gauss e configurações de parâmetros adaptativos. Baseada na teoria do filtro de Gauss proposta por John Ehlers, esta estratégia gera sinais de negociação suaves e adaptativos aplicando vários cálculos de média móvel exponencial aos dados de preços. O núcleo da estratégia é construir um canal de preços ajustado dinamicamente, com bandas superiores e inferiores obtidas adicionando e subtraindo a faixa verdadeira filtrada do preço filtrado de Gauss. Quando o preço ultrapassa a faixa superior, uma posição longa é inserida, e quando ultrapassa a faixa inferior, uma posição curta é inserida.
Os princípios da estratégia da média móvel adaptativa do canal de Gauss são os seguintes:
A estratégia da média móvel adaptativa do canal de Gauss tem as seguintes vantagens:
Apesar das suas muitas vantagens, a estratégia da média móvel adaptativa do canal de Gauss ainda traz certos riscos:
As direções de otimização para a estratégia de média móvel adaptativa do canal de Gauss incluem:
A estratégia de média móvel adaptativa do canal de Gauss é uma estratégia quantitativa de negociação baseada na filtragem e nos parâmetros adaptativos de Gauss, que gera sinais de negociação suaves e confiáveis através da construção dinâmica de canais de preços. A estratégia tem vantagens como forte adaptabilidade, boa capacidade de seguir tendências, alta suavidade, grande flexibilidade e forte praticidade. No entanto, também enfrenta riscos como configuração de parâmetros, eventos repentinos, sobreajuste e arbitragem.
/*backtest start: 2023-03-22 00:00:00 end: 2024-03-27 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy(title="Gaussian Channel Strategy v1.0", overlay=true, calc_on_every_tick=false, initial_capital=10000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1) // Date condition inputs startDate = input(title="Date Start", type=input.time, defval=timestamp("1 Jan 2018 00:00 +0000"), group="Dates") endDate = input(title="Date End", type=input.time, defval=timestamp("31 Dec 2060 23:59 +0000"), group="Dates") timeCondition = true // This study is an experiment utilizing the Ehlers Gaussian Filter technique combined with lag reduction techniques and true range to analyze trend activity. // Gaussian filters, as Ehlers explains it, are simply exponential moving averages applied multiple times. // First, beta and alpha are calculated based on the sampling period and number of poles specified. The maximum number of poles available in this script is 9. // Next, the data being analyzed is given a truncation option for reduced lag, which can be enabled with "Reduced Lag Mode". // Then the alpha and source values are used to calculate the filter and filtered true range of the dataset. // Filtered true range with a specified multiplier is then added to and subtracted from the filter, generating a channel. // Lastly, a one pole filter with a N pole alpha is averaged with the filter to generate a faster filter, which can be enabled with "Fast Response Mode". //Custom bar colors are included. //Note: Both the sampling period and number of poles directly affect how much lag the indicator has, and how smooth the output is. // Larger inputs will result in smoother outputs with increased lag, and smaller inputs will have noisier outputs with reduced lag. // For the best results, I recommend not setting the sampling period any lower than the number of poles + 1. Going lower truncates the equation. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Updates: // Huge shoutout to @e2e4mfck for taking the time to improve the calculation method! // -> migrated to v4 // -> pi is now calculated using trig identities rather than being explicitly defined. // -> The filter calculations are now organized into functions rather than being individually defined. // -> Revamped color scheme. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Functions - courtesy of @e2e4mfck //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Filter function f_filt9x (_a, _s, _i) => int _m2 = 0, int _m3 = 0, int _m4 = 0, int _m5 = 0, int _m6 = 0, int _m7 = 0, int _m8 = 0, int _m9 = 0, float _f = .0, _x = (1 - _a) // Weights. // Initial weight _m1 is a pole number and equal to _i _m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0 _m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0 _m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0 _m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0 _m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0 _m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0 _m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0 _m9 := _i == 9 ? 1 : 0 // filter _f := pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * pow(_x, 9) * nz(_f[9]) : 0) //9 var declaration fun f_pole (_a, _s, _i) => _f1 = f_filt9x(_a, _s, 1), _f2 = (_i >= 2 ? f_filt9x(_a, _s, 2) : 0), _f3 = (_i >= 3 ? f_filt9x(_a, _s, 3) : 0) _f4 = (_i >= 4 ? f_filt9x(_a, _s, 4) : 0), _f5 = (_i >= 5 ? f_filt9x(_a, _s, 5) : 0), _f6 = (_i >= 6 ? f_filt9x(_a, _s, 6) : 0) _f7 = (_i >= 2 ? f_filt9x(_a, _s, 7) : 0), _f8 = (_i >= 8 ? f_filt9x(_a, _s, 8) : 0), _f9 = (_i == 9 ? f_filt9x(_a, _s, 9) : 0) _fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na [_fn, _f1] //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Inputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Source src = input(defval=hlc3, title="Source") //Poles int N = input(defval=4, title="Poles", minval=1, maxval=9) //Period int per = input(defval=144, title="Sampling Period", minval=2) //True Range Multiplier float mult = input(defval=1.414, title="Filtered True Range Multiplier", minval=0) //Lag Reduction bool modeLag = input(defval=false, title="Reduced Lag Mode") bool modeFast = input(defval=false, title="Fast Response Mode") //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Definitions //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Beta and Alpha Components beta = (1 - cos(4*asin(1)/per)) / (pow(1.414, 2/N) - 1) alpha = - beta + sqrt(pow(beta, 2) + 2*beta) //Lag lag = (per - 1)/(2*N) //Data srcdata = modeLag ? src + (src - src[lag]) : src trdata = modeLag ? tr(true) + (tr(true) - tr(true)[lag]) : tr(true) //Filtered Values [filtn, filt1] = f_pole(alpha, srcdata, N) [filtntr, filt1tr] = f_pole(alpha, trdata, N) //Lag Reduction filt = modeFast ? (filtn + filt1)/2 : filtn filttr = modeFast ? (filtntr + filt1tr)/2 : filtntr //Bands hband = filt + filttr*mult lband = filt - filttr*mult // Colors color1 = #0aff68 color2 = #00752d color3 = #ff0a5a color4 = #990032 fcolor = filt > filt[1] ? #0aff68 : filt < filt[1] ? #ff0a5a : #cccccc barcolor = (src > src[1]) and (src > filt) and (src < hband) ? #0aff68 : (src > src[1]) and (src >= hband) ? #0aff1b : (src <= src[1]) and (src > filt) ? #00752d : (src < src[1]) and (src < filt) and (src > lband) ? #ff0a5a : (src < src[1]) and (src <= lband) ? #ff0a11 : (src >= src[1]) and (src < filt) ? #990032 : #cccccc //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Outputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Filter Plot filtplot = plot(filt, title="Filter", color=fcolor, linewidth=3) //Band Plots hbandplot = plot(hband, title="Filtered True Range High Band", color=fcolor) lbandplot = plot(lband, title="Filtered True Range Low Band", color=fcolor) //Channel Fill fill(hbandplot, lbandplot, title="Channel Fill", color=fcolor, transp=80) //Bar Color barcolor(barcolor) longCondition = crossover(close, hband) and timeCondition closeAllCondition = crossunder(close, hband) and timeCondition if longCondition strategy.entry("long", strategy.long) if closeAllCondition strategy.close("long")