Chiến lược giao dịch theo mùa lai S&P500 là một chiến lược định lượng giao dịch cổ phiếu dựa trên các mô hình theo mùa. Nó kết hợp một hệ thống mua & giữ nâng cao, điều kiện chỉ số kỹ thuật và chỉ số lưu lượng khối lượng để xoay giữa các tháng hoạt động tốt hơn và tồi tệ hơn trong năm.
Các tín hiệu và quy tắc giao dịch chính là:
Chiến lược này tận dụng hiệu suất không đồng đều của thị trường chứng khoán trong suốt năm, đi dài trong tháng 10 - tháng 4 đã vượt trội về mặt thống kê và kiếm lợi nhuận hoặc giảm giá trong những tháng có hiệu suất kém hơn từ tháng 5 đến tháng 9.
Chiến lược giao dịch theo mùa lai của S&P500 có những lợi thế chính sau:
Một số rủi ro tiềm ẩn bao gồm:
Các rủi ro có thể được giảm thiểu thông qua kiểm soát rủi ro nghiêm ngặt hơn, kết hợp các chỉ số, điều chỉnh tham số, học máy v.v.
Cơ hội tối ưu hóa có thể:
S&P500 Hybrid Seasonal Trading Strategy tổng hợp các xu hướng theo mùa, các chỉ số thời gian kỹ thuật và các biện pháp dòng tiền. Bằng cách tránh các tháng hoạt động tồi tệ nhất trong năm và định vị trong những tháng mạnh hơn theo mùa được bổ sung bằng việc kiểm soát biến động hiệu quả, khuôn khổ có thể tạo ra alpha nhất quán. Cấu trúc thích nghi cũng cung cấp các thành phần mô-đun hữu ích cho các học viên để kiểm tra, tối ưu hóa và xây dựng. Dữ liệu bổ sung, dừng lỗ, điều chỉnh tham số và tập hợp mang lại cơ hội hơn nữa để cải thiện hiệu suất.
/*backtest start: 2023-12-01 00:00:00 end: 2023-12-31 23:59:59 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // TASC Issue: April 2022 - Vol. 40, Issue 4 // Article: Sell In May? Stock Market Seasonality // Article By: Markos Katsanos // Language: TradingView's Pine Script v5 // Provided By: PineCoders, for tradingview.com //@version=5 strategy(title = "TASC 2022.04 S&P500 Hybrid Seasonal System", shorttitle = "HSS v2.0", overlay = true, default_qty_type = strategy.percent_of_equity, default_qty_value = 10, initial_capital = 100000, currency = currency.USD, commission_type = strategy.commission.percent, commission_value = 0.01 ) // Helper Functions: // @function Returns the ratio to max/min of a sample period // @param src float, data source. // @param length int, period of the sample. // @returns [float, float] tuple. volatility (float src, int length) => [(src / ta.highest(src, length)[1] - 1.0) * 100.0, (src / ta.lowest (src, length)[1] - 1.0) * 100.0] // @function Volume Flow Indicator. // @param Period int, period of the data sample. // @param VCoef float, Volume Volatility Coefficient. // @param Coef float, Cutoff Coefficient. // @returns float. // ref: https://mkatsanos.com/volume-flow-vfi-indicator/ vfi (int Period = 130, float VCoef = 2.5, float Coef = 0.2) => lastHLC3 = nz(hlc3[1], hlc3) MF = hlc3 - lastHLC3 Vinter = ta.stdev(math.log(hlc3) - math.log(lastHLC3), 30) Vave = ta.sma(volume, Period)[1] Cutoff = Coef * close * Vinter VC = math.min(volume, Vave * VCoef) VCP = MF > Cutoff ? VC : MF < -Cutoff ? -VC : 0.0 VFI1 = nz(math.sum(VCP, Period) / Vave) VFI = ta.ema(VFI1, 3) // inputs: // optional strategy obserservation window parameters: string ig_ow = 'Observation Window:' bool i_Sdate = input( title = 'Start date:', defval = timestamp('2021-01-01'), inline = 'Sdate', group = ig_ow ) < time // bool i_useSdate = input.bool( title = '', defval = false, group = ig_ow, inline = 'Sdate', tooltip = 'Optional start date to clamp strategy observation window.' ) // bool i_Edate = input( title = 'End date:', defval = timestamp('2022-01-01'), inline = 'Edate', group = ig_ow ) > time // bool i_useEdate = input.bool( title = '', defval = false, group = ig_ow, inline = 'Edate', tooltip = 'Optional end date to clamp strategy observation window.' ) // // string ig_ro = 'Lookback Options:' int i_lback = input.int( title = 'Lookback Shift:', defval = 0, minval = 0, group = ig_ro, tooltip = 'Optional, inspect previous signal values.' ) // // string ig_so = 'Signal Options:' bool i_onlyL = input.bool( title = 'Long Only:', defval = true, group = ig_so, tooltip = 'If switched off, short entries are initiated by sell signals.' ) // int i_sMonth = input.int( title = 'Sell Month:', defval = 8, minval = 1, maxval = 12, step = 1, group = ig_so, tooltip = 'The worst performing month, originally clamped between months 5 and 8.' ) // int i_maxVI = input.int( title = 'Max VIX up:', defval = 60, minval = 50, maxval = 60, step = 5, group = ig_so, tooltip = 'Volatility maximum threshold.' ) // int i_critVFI = input.int( title = 'Critical VFI Sell:', defval = -20, minval = -20, maxval = -15, step = 5, group = ig_so, tooltip = 'Critical money float (VFI) threshold for sell signal.' ) // float i_K = input.float( title = 'ATR/VIX Ratio:', defval = 1.5, minval = 1.3, maxval = 1.7, step = 0.2, group = ig_so, tooltip = 'ATR to VIX ratio for sell signal.' ) // // string i_VIticker = input( title = 'Volatility Index:', defval = 'VIX', group = ig_so, tooltip = 'Volatility Index Ticker.' ) // string i_VItf = input.timeframe( title = '', defval = 'D', group = ig_so, tooltip = 'Volatility Index Timeframe.' ) // int i_VIiperiod = input.int( title = 'Implied Volatility period:', defval = 25, group = ig_so ) // int i_VIhperiod = input.int( title = 'Historical Volatility period:', defval = 15, group = ig_so ) // // int i_VFIperiod = input.int( title = 'VFI period:', defval = 130, group = ig_so, inline = 'VFI1' ) // int i_VFIMperiod = input.int( title = 'MA:', defval = 10, group = ig_so, inline = 'VFI1', tooltip = 'VFI and Moving Average sampling period.' ) // float i_VFIcoef = input.float( title = 'VFI Coef Cuttoff:', defval = 0.2, group = ig_so, inline = 'VFI2' ) // float i_VFIvcoef = input.float( title = 'Volat.:', defval = 2.5, group = ig_so, inline = 'VFI2', tooltip = 'VFI Cutoff and Volatility coefficient.' ) // int i_ATRperiod = input.int( title = 'ATR length:', defval = 15, group = ig_so, inline = 'ATR', tooltip = 'ATR length.' ) // // string ig_to = 'Table Options:' bool i_showT = input.bool( title = 'Show Table:', defval = false, group = ig_to, tooltip = 'Optional toggle.' ) // string i_Tpos = input.string(title = 'Position:', defval = position.middle_right, options = [ position.top_left, position.top_center, position.top_right, position.middle_left, position.middle_center, position.middle_right, position.bottom_left, position.bottom_center, position.bottom_right ], group = ig_to) // int i_Ttransp = input.int( title = 'Transparency:', defval = 0, minval = 1, maxval = 99, group = ig_to ) // // color i_Tcframe = input.color( title = 'Table Colors:', defval = #000000, group = ig_to, inline = 'table color' ) // color i_Tcrowe = input.color( title = '', defval = #d6dae3, group = ig_to, inline = 'table color' ) // color i_Tcrowo = input.color( title = '', defval = #cccccc, group = ig_to, inline = 'table color', tooltip = 'Table background colors, in order: frame, even row, odd row.' ) // string i_Ttsize = input.string(title = 'Table Text:', defval = size.small, options = [size.auto, size.huge, size.large, size.normal, size.small, size.tiny], group = ig_to, inline = 'table text' ) // color i_Tcdeft = input.color( title = 'Text Colors:', defval = #000000, group = ig_to, inline = 'table text' ) // color i_Tcsigt = input.color( title = '', defval = color.red, group = ig_to, inline = 'table text' ) // color i_Tctitt = input.color( title = '', defval = color.navy, group = ig_to, inline = 'table text', tooltip = 'Table text size and colors, in order: default, short signal, title.' ) // // Comparison Index float VIX = request.security(i_VIticker, i_VItf, close) [VIdn, VIup] = volatility(VIX, i_VIiperiod) // Implied [ATRdn, ATRup] = volatility(ta.atr(i_VIhperiod), i_VIiperiod) // Historical float VFI = vfi(i_VFIperiod, i_VFIvcoef, i_VFIcoef) float VFI10 = ta.sma(VFI, i_VFIMperiod) // bool VFIatCrit = VFI > i_critVFI bool lowVolat = (VIup < i_maxVI) or (ATRup < (i_K * i_maxVI)) bool VolatC = VFIatCrit ? lowVolat : false bool Long = ((month >= 10) or (month < i_sMonth)) and VolatC[1] bool Sseasonal = month == i_sMonth // SEASONAL EXIT/SHORT bool Svol = VIup > (2.0 * i_maxVI) // VOLATILITY EXIT/SHORT bool Scrit = ta.cross(i_critVFI, VFI) and (VFI10 < VFI10[1]) // VFI EXIT/SHORT bool Short = Sseasonal or Svol[1] or Scrit[1] bool withinObsWindow = true // if withinObsWindow and strategy.equity > 0 _L = strategy.long _S = strategy.short strategy.entry('L' , direction = _L, when = Long ) if i_onlyL strategy.close('L', comment = 'EXIT SEASONAL' , when = Sseasonal ) strategy.close('L', comment = 'EXIT VOLATILITY', when = Svol[1] ) strategy.close('L', comment = 'EXIT MF' , when = Scrit[1] ) else strategy.entry('S Seasonal' , direction = _S, when = Sseasonal ) strategy.entry('S Volatility', direction = _S, when = Svol[1] ) strategy.entry('S MF Crit.' , direction = _S, when = Scrit[1] ) else strategy.close_all() string SIGNAL = switch (Long) => 'Long Seasonal' (Sseasonal and i_onlyL) => 'Exit Seasonal' (Svol[1] and i_onlyL) => 'Exit Volatility' (Scrit[1] and i_onlyL) => 'Exit Money Flow' (Sseasonal and not i_onlyL) => 'Short Seasonal' (Svol[1] and not i_onlyL) => 'Short Volatility' (Scrit[1] and not i_onlyL) => 'Short Money Flow Bearish' => 'none' string date = str.format( '{0,number,0000}-{1,number,00}-{2,number,00}', year, month, dayofmonth ) var table dTable = table.new(position = i_Tpos, columns = 2, rows = 17, frame_color = color.new(#000000, i_Ttransp), frame_width = 4 ) // // @function Helper to populate the table rows. tRow(tableId, idx, left, right, tcol=0) => color _bg = color.new(idx % 2 ? i_Tcrowo : i_Tcrowe, i_Ttransp) color _tx = switch (tcol) (1) => color.new(i_Tcsigt, i_Ttransp) (2) => color.new(i_Tctitt, i_Ttransp) => color.new(i_Tcdeft, i_Ttransp) // table.cell( table_id=tableId, // column=0, row=idx, // text=left, text_color=_tx, text_halign=text.align_right, text_size=i_Ttsize, // bgcolor=_bg) // // table.cell( table_id=tableId, // column=1, row=idx, // text=str.tostring(right), text_color=_tx, text_halign=text.align_left, text_size=i_Ttsize, // bgcolor=_bg) // if i_showT float _atr10 = ta.atr(10)[i_lback] string _nf = '0.00' string _aru = '🔼 ', string _ard = '🔽 ' // id | idx | left label | right label | conditional color | tRow(dTable, 00, 'S&P500 Hybrid Seasonal ' , '' , 2 ) tRow(dTable, 01, 'Created By: Markos Katsanos' , '' , 2 ) tRow(dTable, 02, 'Date:' , date[i_lback] ) tRow(dTable, 03, 'Signal:' , SIGNAL[i_lback] ) tRow(dTable, 04, 'Price:' , open[i_lback] ) tRow(dTable, 05, 'VIX:' , str.tostring( VIX[i_lback], _nf) ) tRow(dTable, 06, 'VFI:' , str.tostring( VFI[i_lback], _nf) , VFIatCrit ? 1 : 0 ) tRow(dTable, 07, 'ATR:' , str.tostring( _atr10, _nf) ) tRow(dTable, 08, 'VIup%:' , str.tostring( VIup[i_lback], _nf) , VIup > i_maxVI ? 1 : 0 ) tRow(dTable, 09, 'ATRup%:' , str.tostring(ATRup[i_lback], _nf) , ATRup > i_K * i_maxVI ? 1 : 0 ) tRow(dTable, 10, 'VIdn%:' , str.tostring( VIdn[i_lback], _nf) ) tRow(dTable, 11, 'ATRdn%:' , str.tostring(ATRdn[i_lback], _nf) ) tRow(dTable, 12, _aru + 'Long Seasonal:' , Long[i_lback] ) tmp = 12 if not i_onlyL tmp := 13 tRow(dTable, 13, _ard + 'Short:' , Short[i_lback] , Short[i_lback] ? 1 : 0 ) tRow(dTable, tmp+1, _ard + 'Seasonal:' , Sseasonal[i_lback] , Sseasonal[i_lback] ? 1 : 0 ) tRow(dTable, tmp+2, _ard + 'Volatility:' , Svol[1+i_lback] , Svol[1 + i_lback] ? 1 : 0 ) tRow(dTable, tmp+3, _ard + 'Money Flow:' , Scrit[i_lback] , Scrit[i_lback] ? 1 : 0 )