এই কৌশলটির মূল ধারণা হল বৃহত্তর সময়সীমার উপর প্রবণতা দিক চিহ্নিত করা এবং একটি ছোট সময়সীমার মধ্যে প্রবেশের জন্য ব্রেকআউট পয়েন্টগুলি খুঁজে পাওয়া। স্টপ লস আউট তারপর বৃহত্তর সময়সীমার উপর চলমান গড় ট্র্যাক করে।
এই কৌশল মূলত মূল্যায়নের জন্য তিনটি সূচকের উপর নির্ভর করে।
প্রথমত, একটি দীর্ঘ চক্র (যেমন দৈনিক) এক্স-দিনের সহজ চলমান গড় গণনা করুন। যখন দাম এই চলমান গড়ের উপরে থাকে তখনই কেনার অনুমতি দিন। এটি সামগ্রিক প্রবণতার দিক নির্ধারণ করতে এবং ওসিলিয়েটিং সময়কালের ব্যবসায় এড়াতে ব্যবহার করা যেতে পারে।
দ্বিতীয়ত, একটি স্বল্প চক্র (যেমন 5 দিন) এর মধ্যে সর্বোচ্চ মূল্য সুইং হাই গণনা করুন। যখন মূল্য এই সর্বোচ্চ মূল্যটি ভেঙে দেয়, তখন একটি ক্রয় সংকেত ট্রিগার করা হয়। lb lookback period প্যারামিটারটি এখানে উপযুক্ত ব্রেকআউট পয়েন্টগুলি খুঁজে পেতে ব্যবহৃত হয়।
তৃতীয়ত, একটি স্টপ লস লাইন স্থাপন করুন। পজিশনে প্রবেশের পরে, স্টপ লস লাইনটি সর্বনিম্ন মূল্যে লক করা হয় lbশেষতম সর্বনিম্ন পয়েন্ট থেকে এক নির্দিষ্ট সময়ের জন্য স্টপ দূরে। একই সময়ে, একটি প্রস্থান প্রক্রিয়া হিসাবে একটি চলমান গড় লাইন (যেমন দৈনিক 10 দিনের ইএমএ) সেট করুন। যখন মূল্য এই চলমান গড় লাইনের নীচে থাকে তখন অবস্থানটি ছেড়ে দিন।
কৌশলটি অতিরিক্ত প্রসারিত পয়েন্ট কেনা এড়ানোর জন্য এটিআর মানও সেট করে। ব্যাকটেস্টের সময়সীমার মতো অন্যান্য সহায়ক শর্তও রয়েছে।
উপরের তিনটি সূচকের মধ্যে পারস্পরিক প্রভাবের মূল মূল্যায়ন এই কৌশলটির মূল যুক্তি।
একটি ব্রেকআউট ট্র্যাকিং কৌশল হিসাবে, এটি নিম্নলিখিত সুবিধা আছেঃ
অস্থির বাজারগুলিতে ভুয়া ব্রেকআউটের ফাঁদে না পড়ার জন্য দুটি সময়সীমা ব্যবহার করুন। দীর্ঘ সময়সীমা সামগ্রিক প্রবণতা নির্ধারণ করে এবং সংক্ষিপ্ত সময়সীমা নির্দিষ্ট প্রবেশের পয়েন্টগুলি খুঁজে পায়।
সুইং উচ্চ দ্বারা গঠিত ব্রেকআউট পয়েন্টগুলি ব্যবহার করুন। এই ধরণের ব্রেকআউটের একটি নির্দিষ্ট স্থিতিস্থাপকতা রয়েছে এবং ট্র্যাকিং গঠনে সহজ। lb লুকব্যাক পিরিয়ড প্যারামিটারটি সত্যই কার্যকর ব্রেকআউটগুলি খুঁজে পেতেও সামঞ্জস্য করা যেতে পারে।
স্টপ লস পদ্ধতিটি তুলনামূলকভাবে কঠোর, স্ক্র্যাপ হওয়া এড়াতে একটি নির্দিষ্ট বাফার দূরত্বের সাথে সর্বশেষতম নিম্ন পয়েন্টটি ট্র্যাক করে।
বাজারের অবস্থার উপর নির্ভর করে নমনীয়ভাবে মুনাফা নেওয়ার জন্য চলমান গড়কে একটি প্রস্থান প্রক্রিয়া হিসাবে ব্যবহার করুন।
ATR সূচকটি অতিরিক্ত লিভারেজের ঝুঁকি এড়ায়।
পরীক্ষার জন্য বিভিন্ন প্যারামিটার সংমিশ্রণ সেট করা যেতে পারে, বড় অপ্টিমাইজেশান স্পেস সহ।
এই কৌশলের কিছু ঝুঁকিও রয়েছে:
যখন দামটি চলমান গড় রেখার চারপাশে উপরে এবং নীচে oscillates, এটি প্রবেশ এবং প্রস্থান পজিশনের মধ্যে এগিয়ে এবং পিছনে স্যুইচ করা সহজ। একটি উচ্চতর কমিশন ঝুঁকি আছে।
যখন ব্রেক-ইন পয়েন্টটি চলমান গড় রেখার কাছাকাছি থাকে, তখন তুলনামূলকভাবে বড় প্রত্যাহারের ঝুঁকি থাকে। এটি কৌশলটির একটি অন্তর্নিহিত বৈশিষ্ট্য।
যখন বাজারে কোন স্পষ্ট প্রবণতা থাকে না, তখন হোল্ডিংয়ের সময়টি খুব দীর্ঘ হতে পারে, যা সময় ঝুঁকির মুখোমুখি হয়।
এটিআর প্যারামিটারটি যুক্তিসঙ্গতভাবে সেট করা দরকার। যদি এটিআর খুব ছোট হয় তবে ফিল্টারিং প্রভাব দুর্বল। যদি এটি খুব বড় হয় তবে প্রবেশের সুযোগ হ্রাস পাবে।
ফলাফলের উপর বিভিন্ন lb পরামিতির প্রভাব পরীক্ষা করার প্রয়োজন। অত্যধিক বড় পরামিতি কিছু সুযোগ মিস করতে পারে, যখন খুব ছোট পরামিতি মিথ্যা ব্রেকআউট সনাক্ত করতে পারে।
ঝুঁকি হ্রাসঃ
কৌশলটি নিম্নলিখিত মাত্রাগুলিতেও অপ্টিমাইজ করা যেতে পারেঃ
সর্বোত্তম পরামিতি খুঁজে পেতে চলমান গড় পরামিতিগুলির বিভিন্ন সমন্বয় পরীক্ষা করুন।
প্রবেশের সুযোগ এবং ঝুঁকি নিয়ন্ত্রণের ভারসাম্য বজায় রাখার জন্য বিভিন্ন এটিআর পরামিতি সেটিং চেষ্টা করুন।
আরও কার্যকর ব্রেকআউট সনাক্ত করতে lb lookback period প্যারামিটারটি অপ্টিমাইজ করুন।
ঝুঁকি নিয়ন্ত্রণের জন্য অস্থিরতা এবং ড্রাউনডাউনের উপর ভিত্তি করে একটি গতিশীল স্টপ লস তৈরি করার চেষ্টা করুন।
ব্রেকআউটের কার্যকারিতা নির্ধারণের জন্য ট্রেডিং ভলিউমের মতো অন্যান্য কারণগুলি অন্তর্ভুক্ত করুন।
রেফারেন্স হিসাবে চরম পয়েন্টগুলি খুঁজে পেতে /
সর্বোত্তম পরামিতি জন্য পরামিতি প্রশিক্ষণ মেশিন লার্নিং চেষ্টা করুন
সামগ্রিকভাবে, এটি একটি সাধারণ ব্রেকআউট ট্র্যাকিং কৌশল। দ্বৈত সময়সীমা দ্বারা বিচার করা, প্রবেশের সময় নির্ধারণের জন্য সুইং হাই ব্যবহার করা এবং স্টপ লস লাইন এবং চলমান গড় ডাবল বীমা প্রস্থান প্রক্রিয়া ব্যবহার করে একটি সম্পূর্ণ যৌক্তিক ব্যবস্থা গঠন করে। এই কৌশলটির ঝুঁকি এবং রিটার্ন বৈশিষ্ট্যগুলি স্পষ্ট, মাঝারি এবং দীর্ঘমেয়াদী ট্র্যাকিং বিনিয়োগকারীদের জন্য উপযুক্ত। যদিও কিছু ঝুঁকি রয়েছে, তবে প্যারামিটার এবং নিয়মগুলি অনুকূলিতকরণের মাধ্যমে সেগুলি হ্রাস করা যেতে পারে। কৌশলটির উন্নতির জন্য প্রচুর জায়গা রয়েছে। আরও সূচক অন্তর্ভুক্ত করা কৌশল প্রভাবকে আরও উন্নত করতে পারে।
/*backtest start: 2023-01-24 00:00:00 end: 2024-01-30 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © millerrh // The intent of this strategy is to buy breakouts with a tight stop on smaller timeframes in the direction of the longer term trend. // Then use a trailing stop of a close below either the 10 MA or 20 MA (user choice) on that larger timeframe as the position // moves in your favor (i.e. whenever position price rises above the MA). // Option of using daily ATR as a measure of finding contracting ranges and ensuring a decent risk/reward. // (If the difference between the breakout point and your stop level is below a certain % of ATR, it could possibly find those consolidating periods.) //@version=4 strategy("Qullamaggie Breakout", overlay=true, initial_capital=10000, currency='USD', default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1) // === BACKTEST RANGE === Start = input(defval = timestamp("01 Jan 2019 06:00 +0000"), title = "Backtest Start Date", type = input.time) Finish = input(defval = timestamp("01 Jan 2100 00:00 +0000"), title = "Backtest End Date", type = input.time) // Inputs lb = input(defval = 3, title = "Lookback Period for Swing High", minval = 1, tooltip = "Lookback period for defining the breakout level.") lbStop = input(defval = 3, title = "Lookback Bars for Stop Level", minval = 1, tooltip = "Initial stop placement is the lowest low this many bars back. Allows for tighter stop placement than referencing swing lows.") htf = input(defval="D", title="Timeframe of Moving Averages", type=input.resolution, tooltip = "Allows you to set a different time frame for the moving averages. The default behavior is to identify good tightening setups on a larger timeframe (like daily) and enter the trade on a breakout occuring on a smaller timeframe, using the moving averages of the larger timeframe to trail your stop.") maType = input(defval="SMA", options=["EMA", "SMA"], title = "Moving Average Type") ma1Length = input(defval = 10, title = "1st Moving Average Length", minval = 1) ma2Length = input(defval = 20, title = "2nd Moving Average Length", minval = 1) ma3Length = input(defval = 50, title = "3rd Moving Average Length", minval = 1) useMaFilter = input(title = "Use 3rd Moving Average for Filtering?", type = input.bool, defval = true, tooltip = "Signals will be ignored when price is under this slowest moving average. The intent is to keep you out of bear periods and only buying when price is showing strength or trading with the longer term trend.") trailMaInput = input(defval="2nd Moving Average", options=["1st Moving Average", "2nd Moving Average"], title = "Trailing Stop") // MA Calculations ma(maType, src, length) => maType == "EMA" ? ema(src, length) : sma(src, length) //Ternary Operator (if maType equals EMA, then do ema calc, else do sma calc) ma1 = security(syminfo.tickerid, htf, ma(maType, close, ma1Length)) ma2 = security(syminfo.tickerid, htf, ma(maType, close, ma2Length)) ma3 = security(syminfo.tickerid, htf, ma(maType, close, ma3Length)) plot(ma1, color=color.purple, style=plot.style_line, title="MA1", linewidth=2, transp = 60) plot(ma2, color=color.yellow, style=plot.style_line, title="MA2", linewidth=2, transp = 60) plot(ma3, color=color.white, style=plot.style_line, title="MA3", linewidth=2, transp = 60) // === USE ATR FOR FILTERING === // The idea here is that you want to buy in a consolodating range for best risk/reward. So here you can compare the current distance between // support/resistance vs.the ATR and make sure you aren't buying at a point that is too extended from normal. useAtrFilter = input(title = "Use ATR for Filtering?", type = input.bool, defval = false, tooltip = "Signals will be ignored if the distance between support and resistance is larger than a user-defined percentage of Daily ATR. This allows the user to ensure they are not buying something that is too extended and instead focus on names that are consolidating more.") atrPerc = input(defval = 100, title = "% of Daily ATR Value", minval = 1) atrValue = security(syminfo.tickerid, "D", atr(14))*atrPerc*.01 // === PLOT SWING HIGH/LOW AND MOST RECENT LOW TO USE AS STOP LOSS EXIT POINT === // Change these values to adjust the look back and look forward periods for your swing high/low calculations pvtLenL = lb pvtLenR = lb // Get High and Low Pivot Points pvthi_ = pivothigh(high, pvtLenL, pvtLenR) pvtlo_ = pivotlow(low, pvtLenL, pvtLenR) // Force Pivot completion before plotting. Shunt = 1 //Wait for close before printing pivot? 1 for true 0 for flase maxLvlLen = 0 //Maximum Extension Length pvthi = pvthi_[Shunt] pvtlo = pvtlo_[Shunt] // Count How many candles for current Pivot Level, If new reset. counthi = barssince(not na(pvthi)) countlo = barssince(not na(pvtlo)) pvthis = fixnan(pvthi) pvtlos = fixnan(pvtlo) hipc = change(pvthis) != 0 ? na : color.maroon lopc = change(pvtlos) != 0 ? na : color.green // Display Pivot lines plot((maxLvlLen == 0 or counthi < maxLvlLen) ? pvthis : na, color=hipc, transp=0, linewidth=1, offset=-pvtLenR-Shunt, title="Top Levels") // plot((maxLvlLen == 0 or countlo < maxLvlLen) ? pvtlos : na, color=lopc, transp=0, linewidth=1, offset=-pvtLenR-Shunt, title="Bottom Levels") plot((maxLvlLen == 0 or counthi < maxLvlLen) ? pvthis : na, color=hipc, transp=0, linewidth=1, offset=0, title="Top Levels 2") // plot((maxLvlLen == 0 or countlo < maxLvlLen) ? pvtlos : na, color=lopc, transp=0, linewidth=1, offset=0, title="Bottom Levels 2") // BUY CONDITIONS stopLevelCalc = valuewhen(pvtlo_, low[pvtLenR], 0) //Stop Level at Swing Low buyLevel = valuewhen(pvthi_, high[pvtLenR], 0) //Buy level at Swing High plot(buyLevel, style=plot.style_line, color=color.blue, title = "Current Breakout Level", show_last=1, linewidth=1, transp=50, trackprice=true) // Conditions for entry and exit stopLevel = float(na) // Define stop level here as "na" so that I can reference it in the inPosition // variable and the ATR calculation before the stopLevel is actually defined. buyConditions = (useMaFilter ? buyLevel > ma3 : true) and (useAtrFilter ? (buyLevel - stopLevel[1]) < atrValue : true) // buySignal = high > buyLevel and buyConditions buySignal = crossover(high, buyLevel) and buyConditions trailMa = trailMaInput == "1st Moving Average" ? ma1 : ma2 sellSignal = crossunder(close, trailMa) // sellSignal = security(syminfo.tickerid, htf, close < trailMa) and security(syminfo.tickerid, htf, close[1] < trailMa) // STOP AND PRICE LEVELS inPosition = bool(na) inPosition := buySignal[1] ? true : sellSignal[1] ? false : low <= stopLevel[1] ? false : inPosition[1] lowDefine = lowest(low, lbStop) stopLevel := inPosition ? stopLevel[1] : lowDefine // plot(stopLevel) buyPrice = buyLevel buyPrice := inPosition ? buyPrice[1] : buyLevel plot(stopLevel, style=plot.style_line, color=color.orange, title = "Current Stop Level", show_last=1, linewidth=1, transp=50, trackprice=true) plot(inPosition ? stopLevel : na, style=plot.style_circles, color=color.orange, title = "Historical Stop Levels", transp=50, trackprice=false) // plot(buyPrice, style=plot.style_line, color=color.blue, linewidth=1, transp=50, trackprice=true) // (STRATEGY ONLY) Comment out for Study strategy.entry("Long", strategy.long, stop = buyLevel, when = buyConditions) strategy.exit("Exit Long", from_entry = "Long", stop=stopLevel[1]) if (low[1] > trailMa) strategy.close("Long", when = sellSignal) // if (low[1] > trailMa) // strategy.exit("Exit Long", from_entry = "Long", stop=trailMa) //to get this to work right, I need to reference highest highs instead of swing highs //because it can have me buy right back in after selling if the stop level is above the last registered swing high point.