Die Ressourcen sind geladen. Beförderung...

Johnny's BOT

Schriftsteller:ChaoZhang, Datum: 2022-05-18 09:38:27
Tags:ADXRSIMACD

- Ich weiß nicht.

Dies ist eine aktualisierte Version des 60MIN-Bots, Ich habe beschlossen, diesen Bot für Leute zu machen, die immer noch 10BOT benutzen, Dies ist eine viel rentabler und zuverlässiger Version

Das ist so wichtig für die Nutzer.

Wie immer ist dieser Bot nur für BINANCE:BTCUSDTPERP

Um dieses Ergebnis so wahr wie möglich zu machen, beschloss ich, möglichst wenige Indikatoren zu verwenden. Das bedeutet, dass der Bot schnell auf jede Trendänderung reagiert. Leider hat sich die Qualität der eröffneten Positionen dadurch deutlich verringert (79% profitable Trades). Es besteht auch aus einem ziemlich hohen Zielpunkt und im Grunde ein niedriger Stop-Loss.

TP: 1,5 SL: 7,2

Der Bot verwendet die effizientesten und wichtigsten Indikatoren wie:

ADX - ist einer der leistungsfähigsten und genauesten Trendindikatoren. ADX misst, wie stark ein Trend ist, und kann wertvolle Informationen darüber geben, ob es eine potenzielle Handelsmöglichkeit gibt. CLOUD - Dies ist einer der Newset-Indikatoren, die ich verwende. Dieser Indikator hilft bei der Strategie, dieser Indikator soll den richtigen Markttrend anzeigen. Durch die Anwendung der großen Länge dieses Indikators kann ich eine Trendänderung etwas später, aber genauer bemerken. RANGE FILTER - dieser Indikator dient der besseren Sicht auf Trends, definiert Trends, das ist wichtig für jede Bullen/Bärenfalle, was sehr hilfreich ist, weil die Trends sehr variabel sind. FAST MA - wie die vorherigen ist dies für eine bessere Sicht der Trends und die richtige Definition der Trends, auch Speed_MA werden verwendet, um die zukünftige Preisbewegung vorherzusagen. MACD - Moving Average Convergence Divergence (MACD) ist ein trendfolgende Dynamikindikator, der die Beziehung zwischen zwei gleitenden Durchschnitten eines Wertpapierpreises zeigt. Der MACD wird berechnet, indem der 26-Perioden exponentielle gleitende Durchschnitt (EMA) von der 12-Perioden-EMA subtrahiert wird. Volumen - ist der wichtigste Indikator für die Strategie, um offene Trades auf einem flachen Chart zu vermeiden, werden neue Trades nach einem starken Volumen-Bars geöffnet. RSI - Wert hilft der Strategie, den Handel zur richtigen Zeit zu stoppen.

Mit diesen Indikatoren öffnet der Bot etwa 75-80% der Positionen. Darüber hinaus habe ich zwei unabhängige der Hauptbedingung der Möglichkeit der Eröffnung einer Position geschaffen, wie:

Reversals (basierend auf RSI-Crossovers) - diese Option kann mehr Geschwindigkeit für die richtige Entscheidung hinzufügen, während sich Trends sehr schnell ändern. BOLLINGER BANDS - diese Funktion hat auch die Möglichkeiten der Eröffnung und Schließung neuer Positionen erhöht, es funktioniert so, dass, wenn die Kerze außerhalb der Bolinger-Bänder geschlossen wird, mehr Positionen geöffnet werden, konzentrierte ich mich auf diese Funktion, um ein hohes Prozentsatzniveau so weit wie möglich zu halten

Zur Aufrechterhaltung der hohen Qualität der Trades sind sowohl Bollinger-Bänder als auch Umkehrungen von den wichtigsten Indikatoren abhängig

Ich denke, dass die Ergebnisse dieses Bots sind die richtigen, aber lassen Sie uns nicht vergessen, dass backtesting ist die Prüfung in der Vergangenheit, ist es nicht bekannt, wie der Bot in der Zukunft verhalten wird, jedoch, die Verwendung von Indikatoren, die nicht sehr optimiert sind, kann das Ergebnis sehr nahe in der Zukunft bringen

Viel Glück und viel Spaß.

Zurückprüfung

Johny’s BOT


/*backtest
start: 2022-05-01 00:00:00
end: 2022-05-16 23:59:00
period: 4h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4

strategy("Johny's BOT [60MIN]", overlay=true,  pyramiding=1,initial_capital = 10000, default_qty_type= strategy.percent_of_equity, default_qty_value = 100, calc_on_order_fills=false, slippage=0,commission_type=strategy.commission.percent,commission_value=0.04)

//SOURCE =============================================================================================================================================================================================================================================================================================================

src                 =                   input(high)

// INPUTS ============================================================================================================================================================================================================================================================================================================

// ADX --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ADX_options         =                   input("MASANAKAMURA",                   title = "ADX option",                                       options = ["CLASSIC", "MASANAKAMURA"],                                          group = "ADX")
ADX_len             =                   input(13,                               title = "ADX lenght",                                       type = input.integer, minval = 1,                                               group = "ADX")
th                  =                   input(15,                               title = "ADX treshold",                                     type = input.float, minval = 0, step = 0.5,                                     group = "ADX")

// Cloud --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

len                 =                   input(7,                               title="Cloud Length",                                                                                                                       group="Cloud")

//SAR----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

start               =                   input(0.015,                            title="SAR Start",                                          type=input.float, step=0.001 ,                                                  group="SAR")       
increment           =                   input(0.018,                            title="SAR Increment",                                      type=input.float, step=0.001 ,                                                  group="SAR")     
maximum             =                   input(0.1,                              title="SAR Maximum",                                        type=input.float, step=0.01 ,                                                   group="SAR")       

// Range Filter ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

per_                =                   input(10,                               title="Period",                                           minval=1,                                                                       group = "Range Filter")
mult                =                   input(1.5,                              title="mult.",                                              minval=0.1, step = 0.1,                                                         group = "Range Filter")

//MACD----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

fast_length         =                   input(6,                                title="Fast Length",                                        type=input.integer,                                                             group="MACD")
slow_length         =                   input(8,                                title="Slow Length",                                        type=input.integer,                                                             group="MACD")
signal_length       =                   input(17,                               title="Signal Smoothing",                                   type=input.integer,                                                             group="MACD")

// Volume ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

volume_f            =                   input(0.8,                              title="Volume mult.",                                       minval = 0, step = 0.1,                                                         group="Volume")
sma_length          =                   input(37,                               title="Volume lenght",                                      minval = 1,                                                                     group="Volume")


// RSI -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

RSI_len             = input(25,                                                 title="Rsi Lenght",                                         minval = 1,                                                                     group="RSI")

//BOLINGER BANDS ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

// inputs

bb1                 =                   input(true,                             title="Show BB ",                                                                                                                          group="Bollinger Bands")
m1                  =                   input(true,                             title="Show MA ",                                                                                                                          group="Bollinger Bands")
tf1                 =                   input("",                               title = "Timeframe ",                                      type = input.resolution,                                                        group="Bollinger Bands")
src1                =                   input(high,                            title = "Source ",                                         type = input.source,                                                            group="Bollinger Bands")
per1                =                   input(10,                               title = "Period ",                                         type = input.integer, minval = 2,                                               group="Bollinger Bands")
dev1                =                   input(2.1,                              title = "Deviation ",                                      type = input.float, minval = 1,                                                 group="Bollinger Bands")

//MA----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

length              =                   input(66,                               title="MA Length",                                          minval=1,                                                                       group="Fast MA" )
matype              =                   input(2,                                title="AvgType",                                            minval=1, maxval=5,                                                             group="Fast MA")

//REVERSAL ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ACT_REV             =                   input(true,                             title = "REVERSAL",                                         type = input.bool,                                                              group="REVERSAL")
leftBars            =                   input(15)
rightBars           =                   input(7)
rsi_ob              =                   input(64,                               title="REV Rsi Overbought",                                                                                                                 group="REVERSAL")
rsi_os              =                   input(34,                               title="REV RSI Oversold",                                                                                                                   group="REVERSAL")

//TP PLOTSHAPE -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

tp_long0            =                   input(1.5,                              title="TP Long",                                          type = input.float,     minval = 0,     step = 0.1,                               group="TP PLOTSHAPE") 
tp_short0           =                   input(1.5,                              title="TP Short",                                         type = input.float,     minval = 0,     step = 0.1,                               group="TP PLOTSHAPE") 

// SL PLOTSHAPE ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Act_sl              =                   input(true,                             title="Stop loss?",                                       type = input.bool,                                                                group="SL PLOTSHAPE")
sl0                 =                   input(7.2,                              title="% Stop loss",                                      type = input.float,     minval = 0,     step = 0.1,                               group="SL PLOTSHAPE")

//INDICATORS =============================================================================================================================================================================================================================================================================================================

//ADX-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

calcADX(_len) =>
    up              =                                                                                                                       change(high)
	down            =                                                                                                                      -change(low)
	plusDM          =                                                                                                                       na(up)   ? na : (up > down and up > 0   ? up   : 0)
    minusDM         =                                                                                                                       na(down) ? na : (down > up and down > 0 ? down : 0)
	truerange       =                                                                                                                       rma(tr, _len)
	_plus           =                                                                                                                       fixnan(100 * rma(plusDM, _len)  / truerange)
	_minus          =                                                                                                                       fixnan(100 * rma(minusDM, _len) / truerange)
	sum             =                                                                                                                       _plus + _minus
	_adx            =                                                                                                                       100 * rma(abs(_plus - _minus) / (sum == 0 ? 1 : sum), _len)
    [_plus,_minus,_adx]
calcADX_Masanakamura(_len) =>
    SmoothedTrueRange                   =                                                                                                   0.0
    SmoothedDirectionalMovementPlus     =                                                                                                   0.0
    SmoothedDirectionalMovementMinus    =                                                                                                   0.0
    TrueRange                           =                                                                                                   max(max(high - low, abs(high - nz(close[1]))), abs(low - nz(close[1])))
    DirectionalMovementPlus             =                                                                                                   high - nz(high[1]) > nz(low[1]) - low ? max(high - nz(high[1]), 0) : 0
    DirectionalMovementMinus            =                                                                                                   nz(low[1]) - low > high - nz(high[1]) ? max(nz(low[1]) - low, 0)   : 0
    SmoothedTrueRange                   :=                                                                                                  nz(SmoothedTrueRange[1]) - (nz(SmoothedTrueRange[1]) /_len) + TrueRange
    SmoothedDirectionalMovementPlus     :=                                                                                                  nz(SmoothedDirectionalMovementPlus[1])  - (nz(SmoothedDirectionalMovementPlus[1])  / _len) + DirectionalMovementPlus
    SmoothedDirectionalMovementMinus    :=                                                                                                  nz(SmoothedDirectionalMovementMinus[1]) - (nz(SmoothedDirectionalMovementMinus[1]) / _len) + DirectionalMovementMinus
    DIP                                 =                                                                                                   SmoothedDirectionalMovementPlus  / SmoothedTrueRange * 100
    DIM                                 =                                                                                                   SmoothedDirectionalMovementMinus / SmoothedTrueRange * 100
    DX                                  =                                                                                                   abs(DIP-DIM) / (DIP+DIM)*100
    adx                                 =                                                                                                   sma(DX, _len)
    [DIP,DIM,adx]
[DIPlusC,DIMinusC,ADXC] =                                                                                                                   calcADX(ADX_len) 
[DIPlusM,DIMinusM,ADXM] =                                                                                                                   calcADX_Masanakamura(ADX_len)

DIPlus                  =                                                                                                                   ADX_options == "CLASSIC" ? DIPlusC    : DIPlusM
DIMinus                 =                                                                                                                   ADX_options == "CLASSIC" ? DIMinusC   : DIMinusM
ADX                     =                                                                                                                   ADX_options == "CLASSIC" ? ADXC       : ADXM
L_adx                   =                                                       DIPlus > DIMinus and ADX > th
S_adx                   =                                                       DIPlus < DIMinus and ADX > th


//Cloud --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

PI =                                                                                                                                        2 * asin(1)
hilbertTransform(src) =>
    0.0962 * src + 0.5769 * nz(src[2]) - 0.5769 * nz(src[4]) - 0.0962 * nz(src[6])
computeComponent(src, mesaPeriodMult) =>
    hilbertTransform(src) * mesaPeriodMult
computeAlpha(src, fastLimit, slowLimit) =>
    mesaPeriod =                                                                                                                            0.0
    mesaPeriodMult =                                                                                                                        0.075 * nz(mesaPeriod[1]) + 0.54
    smooth =                                                                                                                                0.0
    smooth :=                                                                                                                               (4 * src + 3 * nz(src[1]) + 2 * nz(src[2]) + nz(src[3])) / 10
    detrender   =                                                                                                                           0.0
    detrender   :=                                                                                                                          computeComponent(smooth, mesaPeriodMult)
    I1 =                                                                                                                                    nz(detrender[3])
    Q1 =                                                                                                                                    computeComponent(detrender, mesaPeriodMult)
    jI =                                                                                                                                    computeComponent(I1, mesaPeriodMult)
    jQ =                                                                                                                                    computeComponent(Q1, mesaPeriodMult)
    I2 = 0.0
    Q2 = 0.0
    I2 := I1 - jQ
    Q2 := Q1 + jI
    I2 := 0.2 * I2 + 0.8 *                                                                                                                  nz(I2[1])
    Q2 := 0.2 * Q2 + 0.8 *                                                                                                                  nz(Q2[1])
    Re = I2 * nz(I2[1]) + Q2 *                                                                                                              nz(Q2[1])
    Im = I2 * nz(Q2[1]) - Q2 *                                                                                                              nz(I2[1])
    Re := 0.2 * Re + 0.8 *                                                                                                                  nz(Re[1])
    Im := 0.2 * Im + 0.8 *                                                                                                                  nz(Im[1])
    if Re != 0 and Im != 0
        mesaPeriod := 2 *                                                                                                                   PI / atan(Im / Re)
    if mesaPeriod > 1.5 *                                                                                                                   nz(mesaPeriod[1])
        mesaPeriod := 1.5 *                                                                                                                 nz(mesaPeriod[1])
    if mesaPeriod < 0.67 *                                                                                                                  nz(mesaPeriod[1])
        mesaPeriod := 0.67 *                                                                                                                nz(mesaPeriod[1])
    if mesaPeriod < 6
        mesaPeriod := 6
    if mesaPeriod > 50
        mesaPeriod := 50
    mesaPeriod := 0.2 * mesaPeriod + 0.8 *                                                                                                  nz(mesaPeriod[1])
    phase = 0.0
    if I1 != 0
        phase := (180 / PI) *                                                                                                               atan(Q1 / I1)
    deltaPhase      =                                                                                                                       nz(phase[1]) - phase
    if  deltaPhase  < 1
        deltaPhase  := 1
    alpha           = fastLimit / deltaPhase
    if  alpha < slowLimit
        alpha       := slowLimit
    [alpha,alpha/2.0]
er                  =                                                                                                                       abs(change(src,len)) / sum(abs(change(src)),len)
[a,b]               =                                                                                                                       computeAlpha(src, er, er*0.1)
mama                =                                                                                                                       0.0
mama                :=                                                                                                                      a * src + (1 - a) * nz(mama[1])
fama                =                                                                                                                       0.0
fama                :=                                                                                                                      b * mama + (1 - b) * nz(fama[1])
alpha               =                                                                                                                       pow((er * (b - a)) + a, 2)
kama                =                                                                                                                       0.0
kama                :=                                                                                                                      alpha * src + (1 - alpha) * nz(kama[1])

L_cloud             =                                                           kama > kama[1]
S_cloud             =                                                           kama < kama[1]

//SAR------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

psar                                    =                                                                                                   sar(start, increment, maximum)
dir                                     =                                                                                                   psar < close ? 1 : -1
L_sar                                   =                                       dir ==1
S_sar                                   =                                       dir ==-1

// Range Filter ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

var bool L_RF = na,  var bool S_RF = na

Range_filter(_src, _per_, _mult)=>
    var float _upward   =                                                                                                                   0.0
    var float _downward =                                                                                                                   0.0
    wper                =                                                                                                                   (_per_*2) - 1
    avrng               =                                                                                                                   ema(abs(_src - _src[1]), _per_)
    _smoothrng          =                                                                                                                   ema(avrng, wper)*_mult
    _filt               =                                                                                                                   _src
    _filt               :=                                                                                                                  _src > nz(_filt[1]) ? ((_src-_smoothrng) < nz(_filt[1]) ? nz(_filt[1]) : (_src-_smoothrng)) : ((_src+_smoothrng) > nz(_filt[1]) ? nz(_filt[1]) : (_src+_smoothrng))
    _upward             :=                                                                                                                  _filt > _filt[1] ? nz(_upward[1]) + 1 : _filt < _filt[1] ? 0 : nz(_upward[1])
    _downward           :=                                                                                                                  _filt < _filt[1] ? nz(_downward[1]) + 1 : _filt > _filt[1] ? 0 : nz(_downward[1])
    [_smoothrng,_filt,_upward,_downward]
[smoothrng, filt, upward, downward] = Range_filter(src, per_, mult)
hband                   =                                                                                                                   filt + smoothrng
lband                   =                                                                                                                   filt - smoothrng
L_RF                    :=                                                      high > hband and upward > 0
S_RF                    :=                                                      low < lband and downward > 0

//MACD-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

fast_ma                 =                                                                                                                               ema(src, fast_length)
slow_ma                 =                                                                                                                               ema(src, slow_length)
macd                    =                                                                                                                               fast_ma - slow_ma
signal_                 =                                                                                                                               sma(macd, signal_length)
L_macd                  =                                                       macd > signal_ 
S_macd                  =                                                       macd < signal_ 

// RSI -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

WiMA(src, length) => 
    var float MA_s=0.0
    MA_s               :=                                                                                                                   (src + nz(MA_s[1] * (length-1)))/length
    MA_s
RSI_Volume(fv, length) =>	
	up                  =                                                                                                                   iff(fv>fv[1],abs(fv-fv[1])*volume,0)
	dn                  =                                                                                                                   iff(fv<fv[1],abs(fv-fv[1])*volume,0)
	upt                 =                                                                                                                   WiMA(up,length)
	dnt                 =                                                                                                                   WiMA(dn,length)
	100*(upt/(upt+dnt))
RSI_V                   =                                                                                                                   RSI_Volume(src, RSI_len)
RSI_                    =                                                                                                                   52

L_rsi                   =                                                       (RSI_V > RSI_)
S_rsi                   =                                                       (RSI_V < RSI_)

// Volume -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Volume_condt            =                                                       volume > sma(volume,sma_length)*volume_f

// BOLINGER BADNS -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ma1                     =                                                                                                                   security(syminfo.tickerid, tf1, sma(src1, per1))
hb1                     =                                                                                                                   ma1 + security(syminfo.tickerid, tf1, stdev(src1, per1)) * dev1
lb1                     =                                                                                                                   ma1 - security(syminfo.tickerid, tf1, stdev(src1, per1)) * dev1

L_BB                                        =                                   open > hb1
S_BB                                        =                                   open < lb1

//MA------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

simplema                =                                                                                                                   sma(src,length)
exponentialma           =                                                                                                                   ema(src,length)
hullma                  =                                                                                                                   wma(2*wma(src, length/2)-wma(src, length), round(sqrt(length)))
weightedma              =                                                                                                                   wma(src, length)
volweightedma           =                                                                                                                   vwma(src, length)
avgval                  =                                                                                                                   matype==1 ? simplema : matype==2 ? exponentialma : matype==3 ? hullma : matype==4 ? weightedma : matype==5 ? volweightedma : na
MA_speed                =                                                                                                                   (avgval / avgval[1] -1 ) *100
L_s_ma                  =                                                       MA_speed > 0 
S_s_ma                  =                                                       MA_speed < 0 

//REVERSAL ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

swh                                         =                                                                                                                                                           pivothigh(leftBars,rightBars)
swl                                         =                                                                                                                                                           pivotlow(leftBars, rightBars)
pivots                                      =                                                                                                                                                           not na(swh)? swh: not na(swl)? swl : na
swh_cond                                    =                                                                                                                                                           not na(swh)
hprice                                      =                                                                                                                                                           0.0
hprice                                      :=                                                                                                                                                          swh_cond ? swh : hprice[1]
le                                          =                                                                                                                                                           false
le                                          :=                                                                                                                                                          swh_cond ? true : (le[1] and high > hprice ? false : le[1]) and (rsi(close, 14)<rsi_ob)
swl_cond                                    =                                                                                                                                                           not na(swl)
lprice                                      =                                                                                                                                                           0.0
lprice                                      :=                                                                                                                                                          swl_cond ? swl : lprice[1]
se                                          =                                                                                                                                                           false
se                                          :=                                                                                                                                                          swl_cond ? true : (se[1] and  low < lprice ? false : se[1]) and (rsi(close, 14)>rsi_os)
le_se                                       =                                                                                                                                                           0
le_se                                       :=                                                                                                                                                          ( crossover(high,hprice+syminfo.mintick) )? +1 : ( crossunder(low,lprice-syminfo.mintick) )? -1 : nz(le_se[1])
_le_se                                      =                                                                                                                                                           le_se[1]==-1 and le_se==+1 and rsi(close, 14)<rsi_ob? 1 : le_se[1]==+1 and le_se==-1 and rsi(close, 14)>rsi_os? -1 :0 
L_REV                                       =                                   _le_se==+1
S_REV                                       =                                   _le_se==-1

//CONDITIONS =======================================================================================================================================================================================================================================================================================================

L_rev_condt             =                                                       L_REV and ACT_REV
S_rev_condt             =                                                       S_REV and ACT_REV

//STRATEGY ==========================================================================================================================================================================================================================================================================================================


L_basic_condt           =                                                       L_adx and L_cloud and L_sar and L_RF and L_macd and L_rsi and L_s_ma and Volume_condt
S_basic_condt           =                                                       S_adx and S_cloud and S_sar and S_RF and S_macd and S_rsi and S_s_ma and Volume_condt

L_second_condt          =                                                       L_basic_condt or L_BB and L_adx and L_sar and L_rsi 
S_second_condt          =                                                       S_basic_condt or S_BB and S_adx and S_sar and S_rsi 

L_third_condt           =                                                       L_second_condt or L_rev_condt and L_adx and L_sar and Volume_condt
S_third_condt           =                                                       S_second_condt or S_rev_condt and S_adx and S_sar and Volume_condt

// PRICE POSITION ==========================================================================================================================================================================================================================================================================================================

var bool longCond = na, var bool shortCond = na
var int CondIni_long = 0, var int CondIni_short = 0
var bool _Final_longCondition = na, var bool _Final_shortCondition = na
var float last_open_longCondition = na, var float last_open_shortCondition = na
var int last_longCondition = na, var int last_shortCondition = na
var int last_Final_longCondition = na, var int last_Final_shortCondition = na
var int nLongs = na, var int nShorts = na
var float sum_long = 0.0, var float sum_short = 0.0
var float Position_Price = 0.0
var bool Final_long_BB = na, var bool Final_short_BB = na
var int last_long_BB = na, var int last_short_BB = na

longCond                :=                                                      L_third_condt
shortCond               :=                                                      S_third_condt


CondIni_long                := longCond[1]              ? 1 :                   shortCond[1] ? -1 :                             nz(CondIni_long[1]                                          )
CondIni_short               := longCond[1]              ? 1 :                   shortCond[1] ? -1 :                             nz(CondIni_short[1]                                         )

longCondition               = (longCond[1]              and                                                                     nz(CondIni_long[1])                 == -1                   )
shortCondition              = (shortCond[1]             and                                                                     nz(CondIni_short[1])                ==  1                   )

last_open_longCondition     :=                      longCondition               or          Final_long_BB[1]            ? close[1]      : nz(last_open_longCondition[1]                     )
last_open_shortCondition    :=                      shortCondition              or          Final_short_BB[1]           ? close[1]      : nz(last_open_shortCondition[1]                    )
last_longCondition          :=                      longCondition               or          Final_long_BB[1]            ? time          : nz(last_longCondition[1]                          )
last_shortCondition         :=                      shortCondition              or          Final_short_BB[1]           ? time          : nz(last_shortCondition[1]                         )
in_longCondition            =                       last_longCondition          >           last_shortCondition
in_shortCondition           =                       last_shortCondition         >           last_longCondition
last_Final_longCondition    :=                      longCondition               ? time                                                  :    nz(last_Final_longCondition[1]                 )
last_Final_shortCondition   :=                      shortCondition              ? time                                                  :    nz(last_Final_shortCondition[1]                )
nLongs                      :=                      nz(nLongs[1]                                                                                                                            )
nShorts                     :=                      nz(nShorts[1]                                                                                                                           )
if longCondition            or                      Final_long_BB
    nLongs                  :=                      nLongs                      + 1
    nShorts                 := 0
    sum_long                :=                      nz(last_open_longCondition) +           nz(sum_long[1])
    sum_short               := 0.0
if shortCondition           or                      Final_short_BB
    nLongs                  := 0
    nShorts                 :=                      nShorts + 1
    sum_short               :=                      nz(last_open_shortCondition)+ nz(sum_short[1])
    sum_long                := 0.0
    
Position_Price              :=                      nz(Position_Price[1])

Position_Price              :=                      longCondition               or          Final_long_BB       ?       sum_long/nLongs         :       shortCondition      or      Final_short_BB      ?       sum_short/nShorts       :       na

//TP---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

var bool long_tp = na, var bool short_tp = na
var int last_long_tp = na, var int last_short_tp = na
var bool Final_Long_tp = na, var bool Final_Short_tp = na
var bool Final_Long_sl0 = na, var bool Final_Short_sl0 = na
var bool Final_Long_sl = na, var bool Final_Short_sl = na
var int last_long_sl = na, var int last_short_sl = na

tp_long             =       ((nLongs  > 1)              ?                       tp_long0  / nLongs              :           tp_long0)                       / 100
tp_short            =       ((nShorts > 1)              ?                       tp_short0 / nShorts             :           tp_short0)                      / 100
long_tp             := high                             >                       (fixnan(Position_Price)         *           (1 + tp_long))                  and                 in_longCondition
short_tp            := low                              <                       (fixnan(Position_Price)         *           (1 - tp_short))                 and                 in_shortCondition
last_long_tp        :=      long_tp                     ?                       time : nz(last_long_tp[1])
last_short_tp       :=      short_tp                    ?                       time : nz(last_short_tp[1])
Final_Long_tp       :=      (long_tp                    and                     last_longCondition              >           nz(last_long_tp[1])             and                 last_longCondition  > nz(last_long_sl[1]))
Final_Short_tp      :=      (short_tp                   and                     last_shortCondition             >           nz(last_short_tp[1])            and                 last_shortCondition > nz(last_short_sl[1]))

//TP SIGNALS--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

tplLevel            = (in_longCondition                 and 
                      (last_longCondition               >                       nz(last_long_tp[1]))            and 
                      (last_longCondition               >                       nz(last_long_sl[1]))            and not Final_Long_sl[1])                   ? 
                      (nLongs > 1)                      ? 
                      (fixnan(Position_Price)           *                       (1 + tp_long))                  :               (last_open_longCondition    *              (1 + tp_long)) : na
tpsLevel            = (in_shortCondition                and 
                      (last_shortCondition              >                       nz(last_short_tp[1]))           and 
                      (last_shortCondition              >                       nz(last_short_sl[1]))           and not Final_Short_sl[1])                  ? 
                      (nShorts > 1)                     ? 
                      (fixnan(Position_Price)           *                       (1 - tp_short))                 :               (last_open_shortCondition   *             (1 - tp_short)) : na

//SL ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Risk                =7.2
Percent_Capital     =99

sl                  =  in_longCondition  ?  min(sl0,(((Risk) * 100) / (Percent_Capital *  max(1, nLongs))))  : 
                       in_shortCondition ?  min(sl0,(((Risk) * 100) / (Percent_Capital *  max(1, nShorts)))) : sl0

Normal_long_sl      =               ((Act_sl            and in_longCondition                and low                             <= ((1 - (sl / 100))    *               (fixnan(Position_Price)))))
Normal_short_sl     =               ((Act_sl            and in_shortCondition               and high                            >= ((1 + (sl / 100))    *               (fixnan(Position_Price)))))  
last_long_sl        :=              Normal_long_sl      ? time : nz(last_long_sl[1])
last_short_sl       :=              Normal_short_sl     ? time : nz(last_short_sl[1])
Final_Long_sl       :=              Normal_long_sl      and last_longCondition              > nz(last_long_sl[1])               and last_longCondition  > nz(last_long_tp[1])  and not Final_Long_tp
Final_Short_sl      :=              Normal_short_sl     and last_shortCondition             > nz(last_short_sl[1])              and last_shortCondition > nz(last_short_tp[1]) and not Final_Short_tp

//RE-ENTRY ON TP-HIT-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

if Final_Long_tp                    or                                          Final_Long_sl
    CondIni_long    :=                                                          -1
    sum_long        :=                                                          0.0
    nLongs          :=                                                          na
    
if Final_Short_tp                   or                                          Final_Short_sl
    CondIni_short   :=                                                          1
    sum_short       :=                                                          0.0
    nShorts         :=                                                          na
    
// Colors ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ADX_COLOR           =   L_adx ? color.lime : S_adx ? color.red :  color.orange
SCALPS_COLOR        =   L_rev_condt ? color.lime : S_rev_condt ? color.maroon : na
BAR_COLOR           =   L_adx ? color.lime : S_adx ? color.red : L_rev_condt ? color.blue : S_rev_condt ? color.maroon : color.orange
barcolor                                                                        (color = BAR_COLOR)

//Indicator plots ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


psarPlot    =   plot(psar,          title="Psar Plot",              style=plot.style_circles,                                                                   color=ADX_COLOR,                                                                                      linewidth=1, transp=0         )
plot((bb1 and m1) ? ma1 : na, title = "MA1", color = ADX_COLOR, transp = 0, linewidth = 1)
hband1 = plot(bb1 ? hb1 : na, title = "HBand1", color = #006064, style = plot.style_line, linewidth = 2)
lband1 = plot(bb1 ? lb1 : na, title = "LBand1", color = color.maroon, style = plot.style_line, linewidth = 2)
fill(hband1, lband1, title = "BG1", color = ADX_COLOR, transp = 85)
mama_p      =   plot(mama,          title="Cloud A",                                                                                                            color=ADX_COLOR                                                                                                                     )
fama_p      =   plot(fama,          title="Cloud B",                                                                                                            color=ADX_COLOR                                                                                                                     )
fill                                    (mama_p,fama_p,                                                                                                         color=ADX_COLOR  )

//Price plots ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

plot((nLongs > 1) or (nShorts > 1) ? Position_Price : na, title = "Price", color = in_longCondition ? color.aqua : color.orange, linewidth = 2, style = plot.style_cross)
plot(tplLevel,                      title="Long TP ",               style = plot.style_cross,                                                                   color=color.green,                                                                                      linewidth = 1               )
plot(tpsLevel,                      title="Short TP ",              style = plot.style_cross,                                                                   color=color.red,                                                                                        linewidth = 1               )

//PLOTSHAPES----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

plotshape(Final_Long_tp,            title="TP Long Signal",         style = shape.flag,                     location=location.abovebar,                         color=color.red,            size=size.small ,       text="TP",          textcolor=color.red,            transp = 0                  ) 
plotshape(Final_Short_tp,           title="TP Short Signal",        style = shape.flag,                     location=location.belowbar,                         color=color.green,          size=size.small ,       text="TP",          textcolor=color.green,          transp = 0                  ) 

plotshape(Final_Long_sl,            title="SL Long",                style=shape.xcross,                     location=location.belowbar,                         color=color.fuchsia,        size=size.small ,       text ="SL",                                         transp = 0                  ) 
plotshape(Final_Short_sl,           title="SL Short",               style=shape.xcross,                     location=location.abovebar,                         color=color.fuchsia,        size=size.small ,       text ="SL",                                         transp = 0                  ) 

plotshape(longCondition,            title="Long",                   style=shape.triangleup,                 location=location.belowbar,                         color=color.blue,           size=size.small ,       text="Long",        textcolor=color.white,          transp = 0                  )
plotshape(shortCondition,           title="Short",                  style=shape.triangledown,               location=location.abovebar,                         color=color.red,            size=size.small ,       text="Short",       textcolor=color.white,          transp = 0                  )

//BACKTESTING inputs --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

long_               =                   input(true,                             title="Longs",                                                                                                                              group= "BACKTEST")
short_              =                   input(true,                             title="Shorts",                                                                                                                             group= "BACKTEST")

// Backtest tp & sl ================================================================================================================================================================================================================================================================================================================================

g(v, p)                                                                         =>                                                                                      round(v * (pow(10, p))) / pow(10, p)

tp_=                                    input(0.015,                            title=" TP/100",                                            step=0.001,                                                                     group= "BACKTEST")
sl_=                                    input(0.072,                            title=" SL/100",                                            step=0.001,                                                                     group= "BACKTEST")

// Backtest Long ==================================================================================================================================================================================================================================================================================================================================


if long_
    strategy.entry("L"                          ,1,                                                             when = L_third_condt                 )
    strategy.exit("S_tp/sl", "L", profit=close * tp_ / syminfo.mintick, loss=close * sl_ / syminfo.mintick)
    
// Backtest Short ==================================================================================================================================================================================================================================================================================================================================

if short_

    strategy.entry("S"                          ,0,                                                             when = S_third_condt             )
    strategy.exit("S_tp/sl", "S", profit=close * tp_ / syminfo.mintick, loss=close * sl_ / syminfo.mintick)









Inhalte dazu

Weitere Informationen