Diese Strategie integriert mehrere technische Indikatoren wie IMACD, EMA und Ichimoku, um ein umfassendes Entscheidungsbaummodell für die Erzeugung von Handelssignalen zu erstellen.
Langes Signal: Wenn IMACD eine bestimmte Farbe ist und EMA 40 über Wolkenoberfläche liegt, gehen Sie lang
Kurzsignal: Wenn der IMACD rot und der EMA 40 unterhalb des Wolkenbodens ist, gehen Sie kurz
Risikolösungen: Optimierung der Parameter-Einstellungen, Anpassung der EMA-Länge, Vereinfachung des Arbeitsablaufs.
Diese Strategie identifiziert Trends mit Hilfe mehrerer Indikatoren, um ein Entscheidungsbaummodell für die Erzeugung von Handelssignalen zu konstruieren. Die Vorteile sind qualitativ hochwertige und genaue Signale. Es besteht Raum für eine progressive Optimierung.
/*backtest start: 2024-01-14 00:00:00 end: 2024-01-21 00:00:00 period: 30m basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Decision Tree Strategy: IMACD, EMA and Ichimoku [cryptoonchain]", overlay=true) lengthMA = input(34, title="Length MA") lengthSignal = input(9, title="Length Signal") conversionPeriods = input.int(9, minval=1, title="Conversion Line Length") basePeriods = input.int(26, minval=1, title="Base Line Length") laggingSpan2Periods = input.int(52, minval=1, title="Leading Span B Length") displacement = input.int(26, minval=1, title="Lagging Span") emaLength = input(40, title="EMA Length") // Added user-configurable EMA length calc_smma(src, len) => smma = float(na) smma := na(smma[1]) ? ta.sma(src, len) : (smma[1] * (len - 1) + src) / len smma calc_zlema(src, length) => ema1 = ta.ema(src, length) ema2 = ta.ema(ema1, length) d = ema1 - ema2 ema1 + d src = ohlc4 hi = calc_smma(high, lengthMA) lo = calc_smma(low, lengthMA) mi = calc_zlema(src, lengthMA) md = (mi > hi) ? (mi - hi) : (mi < lo) ? (mi - lo) : 0 sb = ta.sma(md, lengthSignal) sh = md - sb mdc = src > mi ? (src > hi ? color.rgb(128, 255, 0, 26) : color.green) : (src < lo ? color.red : color.orange) colorCondition = color.rgb(128, 255, 0, 26) conversionLine = math.avg(ta.lowest(conversionPeriods), ta.highest(conversionPeriods)) baseLine = math.avg(ta.lowest(basePeriods), ta.highest(basePeriods)) leadLine1 = math.avg(conversionLine, baseLine) leadLine2 = math.avg(ta.lowest(laggingSpan2Periods), ta.highest(laggingSpan2Periods)) // Use user-configurable length for EMA ema40 = ta.ema(close, emaLength) ebc = input(false, title="Enable bar colors") barcolor(ebc ? mdc : na) conversionLinePlot = plot(conversionLine, color=#2962FF, title="Conversion Line", display=display.none) baseLinePlot = plot(baseLine, color=#B71C1C, title="Base Line", display=display.none) laggingSpanPlot = plot(close, offset=-displacement + 1, color=#43A047, title="Lagging Span", display=display.none) leadLine1Plot = plot(leadLine1, offset=displacement - 1, color=#A5D6A7, title="Leading Span A", display=display.none) leadLine2Plot = plot(leadLine2, offset=displacement - 1, color=#EF9A9A, title="Leading Span B", display=display.none) kumoCloudUpperLinePlot = plot(leadLine1 > leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Upper Line", display=display.none) kumoCloudLowerLinePlot = plot(leadLine1 < leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Lower Line", display=display.none) fill(kumoCloudUpperLinePlot, kumoCloudLowerLinePlot, color=leadLine1 > leadLine2 ? color.green : color.red) a = (leadLine1 > leadLine2 ? leadLine1 : leadLine2) b = (leadLine1 < leadLine2 ? leadLine1 : leadLine2) if mdc == colorCondition and ema40 > a[displacement - 1] strategy.entry("Long", strategy.long) if mdc == color.red and ema40 < b[displacement - 1] strategy.entry("Short", strategy.short)