The resource loading... loading...

Trend Following Strategy Based on Adaptive Moving Average

Author: ChaoZhang, Date: 2024-01-30 16:30:20
Tags:

img

Overview

This strategy employs the Kaufman Adaptive Moving Average (KAMA) indicator to design a trend following trading system. It can track trends quickly when they form and filter out noise during choppy markets. At the same time, the system also integrates Parabolic SAR (PSAR) and Average True Range Trailing Stop as stop loss mechanisms with strong risk control capabilities.

Strategy Logic

  • The length of the KAMA indicator is dynamically adjusted based on recent market volatility. When price changes are greater than recent noise, the EMA window becomes shorter. When price changes are smaller than recent noise, the EMA window becomes longer. This allows KAMA to quickly track trends while filtering out noise during choppy markets.

  • The system mainly judges the trend direction based on the fastest KAMA (KAMA 1). It goes long when KAMA 1 points up and goes short when KAMA 1 points down. To filter out false breaks, a KAMA filter is set. Trading signals are only generated when the change in KAMA 1 exceeds one standard deviation of recent fluctuations.

  • For stop loss, the system provides three optional stop loss methods: KAMA reversal, PSAR reversal, and ATR trailing stop. Investors can choose one or a combination to use.

Advantage Analysis

  • The unique design of the KAMA indicator allows the system to quickly capture emerging trends, stop trading during choppy markets, effectively control trading frequency, and reduce unnecessary slippage and commission costs.

  • The system has multiple built-in stop loss mechanisms. Investors can choose the appropriate stop loss scheme according to their personal risk preferences to effectively control single loss.

  • The system is entirely based on indicators and stop loss lines, avoiding common mis-entry problems caused by shifting transactions.

  • Multiple parameter settings and condition combinations provide great space for system customization. Users can optimize according to different products and frequencies.

Risk Analysis

  • The system does not consider systemic risks and cannot effectively control losses in extreme market conditions.

  • The system PARAMETERS may need to be adjusted according to different products and frequencies, otherwise it will produce overly aggressive or overly conservative results.

  • If relying solely on the KAMA indicator for stop loss, it is easy to get caught in whipsaws during choppy markets. This needs to be combined with PSAR or ATR trailing stop to solve.

Optimization Directions

  • Add trend filtering indicators such as ADX or implied volatility to avoid generating wrong signals during choppy and trend transition stages.

  • Optimize and backtest PARAMETERS for individual products and fixed frequencies to improve stability. Optimization dimensions include KAMA parameter combinations, stop loss parameters, etc.

  • Try MACHINE LEARNING models instead of parameter optimization. Train neural networks or decision tree models with lots of historical data to judge entry and exit timing and stop loss.

  • Try migrating the strategy to other products such as cryptocurrencies. This may require adjusting PARAMETERS or adding other auxiliary indicators.

Summary

This strategy integrates KAMA for trend judgment and multiple stop loss methods to effectively track trend directions and control risks. The uniqueness of the KAMA indicator allows the strategy to quickly determine the direction of emerging trends and avoid false breakout problems. Customizable and optimizable PARAMETERS provide users with great space for personalized adjustment. By optimizing PARAMETERS and integrating MACHINE LEARNING models for individual products and frequencies, the performance of the strategy can be further improved.


/*backtest
start: 2023-12-01 00:00:00
end: 2023-12-31 23:59:59
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © BenHampson
// @version=4
// Credit to:
// - ChuckBanger for much of the KAMA code
// - cheatcountry for the KAMA Filter code
// - millerrh for much of the ATR Stop code
// - racer8 for much of the Position Sizing code

// I have combined aspects of their work and built upon it to form a strategy I like. 
// The KAMA, with its filter, is used for entry.
// An ATR trailing stop loss, PSAR, and the KAMA can all optionally be used as exits, or you can use a combination of the three.

strategy(title="KAMA Strategy - Kaufman's Adaptive Moving Average", shorttitle="KAMA Strategy", overlay=true)

src = input(title="Source", type=input.source, defval=close)

// Exits
KAMA1SL = input(title = 'KAMA 1 Stop Loss', type = input.bool, defval = true)
ATRTSL = input(title = 'ATR Trailing Stop Loss', type = input.bool, defval = false)
PSARSL = input(title = 'PSAR Stop Loss', type = input.bool, defval = false)

// KAMA 1 (Fastest)
length1 = input(title="KAMA 1: Length", type=input.integer, defval=14)
fastLength1 = input(title="KAMA 1: Fast KAMA Length", type=input.integer, defval=2)
slowLength1 = input(title="KAMA 1: Slow KAMA Length", type=input.integer, defval=20)

length2 = input(title="KAMA 2: Length 2", type=input.integer, defval=15)
fastLength2 = input(title="KAMA 2: Fast KAMA Length", type=input.integer, defval=3)
slowLength2 = input(title="KAMA 2: Slow KAMA Length", type=input.integer, defval=22)

length3 = input(title="KAMA 3: Length 3", type=input.integer, defval=16)
fastLength3 = input(title="KAMA 3: Fast KAMA Length", type=input.integer, defval=4)
slowLength3 = input(title="KAMA 3: Slow KAMA Length", type=input.integer, defval=24)

length4 = input(title="KAMA 4: Length", type=input.integer, defval=17)
fastLength4 = input(title="KAMA 4: Fast KAMA Length", type=input.integer, defval=5)
slowLength4 = input(title="KAMA 4: Slow KAMA Length", type=input.integer, defval=26)

// KAMA 5 (Medium)
length5 = input(title="KAMA 5: Length", type=input.integer, defval=18)
fastLength5 = input(title="KAMA 5: Fast KAMA Length", type=input.integer, defval=6)
slowLength5 = input(title="KAMA 5: Slow KAMA Length", type=input.integer, defval=28)

length6 = input(title="KAMA 6: Length", type=input.integer, defval=19)
fastLength6 = input(title="KAMA 6: Fast KAMA Length", type=input.integer, defval=7)
slowLength6 = input(title="KAMA 6: Slow KAMA Length", type=input.integer, defval=30)

length7 = input(title="KAMA 7: Length", type=input.integer, defval=20)
fastLength7 = input(title="KAMA 7: Fast KAMA Length", type=input.integer, defval=8)
slowLength7 = input(title="KAMA 7: Slow KAMA Length", type=input.integer, defval=32)

// KAMA 8 (Slowest)
length8 = input(title="KAMA 8: Length", type=input.integer, defval=21)
fastLength8 = input(title="KAMA 8: Fast KAMA Length", type=input.integer, defval=9)
slowLength8 = input(title="KAMA 8: Slow KAMA Length", type=input.integer, defval=34)

// Kaufman's Adaptive Moving Average
getKAMA(src, length1, fastLength1, slowLength1) =>
    mom = abs(change(src, length1))
    volatility = sum(abs(change(src)), length1)
    
    // Efficiency Ratio
    er = volatility != 0 ? mom / volatility : 0
    
    fastAlpha = 2 / (fastLength1 + 1)
    slowAlpha = 2 / (slowLength1 + 1)
    
    // KAMA Alpha
    sc = pow((er * (fastAlpha - slowAlpha)) + slowAlpha, 2)
    
    kama = 0.0
    kama := sc * src + (1 - sc) * nz(kama[1])
    kama

kama1 = getKAMA(src, length1, fastLength1, slowLength1)
kama2 = getKAMA(src, length2, fastLength2, slowLength2)
kama3 = getKAMA(src, length3, fastLength3, slowLength3)
kama4 = getKAMA(src, length4, fastLength4, slowLength4)
kama5 = getKAMA(src, length5, fastLength5, slowLength5)
kama6 = getKAMA(src, length6, fastLength6, slowLength6)
kama7 = getKAMA(src, length7, fastLength7, slowLength7)
kama8 = getKAMA(src, length8, fastLength8, slowLength8)

//If the kama1 has increased...
kama1delta = kama1[0] - kama1[1]
kama3delta = kama3[0] - kama3[1]
kama8delta = kama8[0] - kama8[1]

// KAMA Plots
plot(kama1, title="KAMA 1", color=#e91e63, display=display.all, linewidth=2)
plot(kama2, title="KAMA 2", color=color.red, display=display.all)
plot(kama3, title="KAMA 3", color=color.red, display=display.all)
plot(kama4, title="KAMA 4", color=color.orange, display=display.all)
plot(kama5, title="KAMA 5", color=color.orange, display=display.all)
plot(kama6, title="KAMA 6", color=color.yellow, display=display.all)
plot(kama7, title="KAMA 7", color=color.yellow, display=display.all)
plot(kama8, title="KAMA 8", color=color.white, display=display.all)



//========================================= KAMA FILTER ===========================================

// Copyright (c) 2019-present, Franklin Moormann (cheatcountry)
// Moving Average Adaptive Filter [CC] script may be freely distributed under the MIT license.

entryFilter = input(title="KAMA Entry Filter", type=input.float, defval=1, minval=0.01)
exitFilter = input(title="KAMA Exit Filter", type=input.float, defval=0.5, minval=0.01)

entryMAAF = entryFilter * stdev(kama1delta, length1)
exitMAAF = exitFilter * stdev(kama1delta, length1)
srcEma = ema(src, length1)



//========================================= TRAILING ATR STOP ====================================

// The following is an adaptation of Trailing ATR Stops by @millerrh
// He based it on scripts by @garethyeo & @SimpleCryptoLife

// Inputs

atrLookback = input(defval=14,title="Trailing ATR Lookback Period",type=input.integer)
multiplier = input(defval=3,title="Trailing ATR Multiplier",type=input.float, step=0.1, minval=0.5, maxval=4)
trailMode = input(title="Trail Mode", defval="Trailing", options=["Running", "Trailing"])
trigInput = input(title="Trigger Trailing Stop On", defval="Wick", options=["Close","Wick"]) 

// Calculate ATR
atrValue = atr(atrLookback)
atrMultiplied = atrValue * multiplier

// Plot the price minus the ATR
atrLow = low - atrMultiplied

// Calculate the low trailing ATRs every time. The trailing stop loss never goes down.
// Set them to something to start with
trailAtrLow = atrLow

// If the ATR Low has gone up AND it has gone above the trail, the low trailing ATR should also go up. If the ATR Low has gone up or down, but not below the trail, the ATR trail stays where it is
trailAtrLow := na(trailAtrLow[1]) ? trailAtrLow : atrLow >= trailAtrLow[1] ? atrLow : trailAtrLow[1]

// Trigger stop based on candle close or low
trigSupport = trigInput == "Close" ? close : trigInput == "Wick" ? low : na

// Determine if price is below support
supportHit = trigSupport <= trailAtrLow

// If price is below support, reset the trailing ATR
trailAtrLow := supportHit ? atrLow : trailAtrLow

// Plot Lines
plotLow = ATRTSL ? trailAtrLow : na
plot(plotLow, title="ATR Low", color=color.white, transp=50, style=plot.style_linebr, linewidth=1, display=display.all)



//====================================== PSAR STOP ==========================================

start = input(0.02, "PSAR Start")
increment = input(0.02, "PSAR Increment")
maximum = input(0.2, "PSAR Max Value")
psar = sar(start, increment, maximum)
psarPlot  = PSARSL ? psar : na
plot(psarPlot, "Parabolic SAR", style=plot.style_cross, color=#3A6CA8, display=display.all)



//========================================= ENTRY & EXITS =====================================================

// Entry
long = kama1delta > 0 and kama1delta > entryMAAF
strategy.entry("Buy", true, when = long) 

// Close
longClose = (PSARSL ? crossunder(close, psar) : na) or (KAMA1SL ? kama1delta < 0 and abs(kama1delta) > exitMAAF : na) or (ATRTSL ? supportHit : na)
strategy.close("Buy", when = longClose, comment = "Sell")

More