संसाधन लोड हो रहा है... लोड करना...

परिवर्तन की दर मात्रात्मक रणनीति

लेखक:चाओझांग, दिनांक: 2023-12-12 15:56:56
टैगः

img

अवलोकन

यह रणनीति बाजार की दिशा निर्धारित करने और ट्रेडिंग सिग्नल उत्पन्न करने के लिए परिवर्तन दर (आरओसी) संकेतक का उपयोग करती है। रणनीति का मुख्य विचार दीर्घकालिक रुझानों का पालन करना और अधिक जोखिम उठाते हुए बाजार से बेहतर प्रदर्शन करना है।

रणनीति तर्क

प्रवेश नियम

  • यदि आरओसी>0 हो तो लॉन्ग, यदि आरओसी<0 हो तो शॉर्ट करें। बाजार की दिशा का न्याय करने के लिए आरओसी के सकारात्मक/नकारात्मक का उपयोग करें।
  • अस्थिरता को फ़िल्टर करने के लिए, केवल तभी ट्रेडिंग सिग्नल जारी करें जब आरओसी लगातार दो दिनों तक एक ही पक्ष पर रहे।

हानि रोकें

6% स्टॉप लॉस सेट है. जब स्टॉप लॉस ट्रिगर किया जाता है, रिवर्स पोजीशन. यह इंगित करता है कि हम बाजार के गलत तरफ हो सकते हैं इसलिए हम तुरंत बाहर निकलते हैं.

बुलबुला विरोधी तंत्र

यदि आरओसी 200 से ऊपर जाता है, तो बाजार को बुलबुला माना जाता है। जब आरओसी बुलबुला क्षेत्र से नीचे गिर जाता है, तो शॉर्ट सिग्नल ट्रिगर किया जाता है। बुलबुला कम से कम 1 सप्ताह तक बने रहने की आवश्यकता होती है।

धन प्रबंधन

फिक्स्ड पोजीशन साइजिंग + इंक्रीमेंटल विधि का उपयोग करें. हर $ 400 लाभ / हानि के लिए $ 200 की स्थिति में वृद्धि / कमी। यह हमें पिरामिड लाभ की अनुमति देता है लेकिन ड्रॉडाउन को भी बढ़ाता है।

लाभ विश्लेषण

इस रणनीति के फायदे:

  1. दर्शन का पालन करते हुए प्रवृत्ति का पालन करता है जिससे दीर्घकालिक सकारात्मक लाभ प्राप्त होने की संभावना होती है।
  2. जोखिम को नियंत्रित करने और अल्पकालिक अस्थिरता को कम करने के लिए स्टॉप लॉस का प्रयोग करें।
  3. बुलबुला विरोधी तंत्र शीर्षों का पीछा करने से बचाता है।
  4. स्थिर स्थिति + वृद्धिशील पद्धति अपट्रेंड में घातीय वृद्धि पैदा करती है।

जोखिम विश्लेषण

कुछ जोखिम भी मौजूद हैंः

  1. आरओसी सूचक झूठे संकेत उत्पन्न करने वाले whipsaws के लिए प्रवण है। फ़िल्टरिंग के लिए अन्य संकेतकों के साथ संयोजन पर विचार करें।
  2. व्यापारिक लागतों पर विचार नहीं किया जाता है जिससे वास्तविक लाभ कम होता है।
  3. बुलबुला विरोधी मापदंडों का खराब समायोजन भी रुझानों को याद करता है।
  4. बढ़ते आकार से हारने पर ड्रॉडाउन बढ़ जाता है।

अनुकूलन दिशाएँ

रणनीति को अनुकूलित करने के कुछ तरीकेः

  1. फ़िल्टर संकेतों में अन्य संकेतक जोड़ें, जैसे एमए, अस्थिरता आदि।
  2. बेहतर बुलबुले का पता लगाने के लिए बुलबुले विरोधी मापदंडों का अनुकूलन करें।
  3. बेहतर जोखिम/लाभ संतुलन के लिए निश्चित स्थिति और वृद्धिशील अनुपात को समायोजित करें।
  4. जब बड़ा नुकसान होता है तो स्वचालित स्टॉप लॉस जोड़ें।
  5. व्यापार लागतों पर विचार करें और तदनुसार प्रवेश नियम निर्धारित करें।

निष्कर्ष

संक्षेप में, यह आरओसी संकेतक के आसपास केंद्रित रणनीति के बाद एक दीर्घकालिक प्रवृत्ति है। इसका उद्देश्य उच्च जोखिम लेने से अल्फा उत्पन्न करना है। आगे के अनुकूलन इसकी व्यवहार्यता में सुधार कर सकते हैं। कुंजी उपयुक्त जोखिम सहिष्णुता ढूंढना है।


/*backtest
start: 2022-12-05 00:00:00
end: 2023-12-11 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © gsanson66


//This strategy use the Rate of Change (ROC) of the closing price to send enter signal. 
//@version=5
strategy("RATE OF CHANGE BACKTESTING", shorttitle="ROC BACKTESTING", overlay=false, precision=3, initial_capital=1000, default_qty_type=strategy.cash, default_qty_value=950, commission_type=strategy.commission.percent, commission_value=0.18)


//--------------------------------FUNCTIONS-----------------------------------//

//@function Displays text passed to `txt` when called.
debugLabel(txt, color, loc) =>
    label.new(bar_index, loc, text = txt, color=color, style = label.style_label_lower_right, textcolor = color.black, size = size.small)

//@function which looks if the close date of the current bar falls inside the date range
inBacktestPeriod(start, end) => (time >= start) and (time <= end)


//----------------------------------USER INPUTS----------------------------------//

//Technical parameters
rocLength = input.int(defval=365, minval=0, title='ROC Length', group="Technical parameters")
bubbleValue = input.int(defval=200, minval=0, title="ROC Bubble signal", group="Technical parameters")
//Risk management
stopLossInput = input.float(defval=10, minval=0, title="Stop Loss (in %)", group="Risk Management")
//Money management
fixedRatio = input.int(defval=400, minval=1, title="Fixed Ratio Value ($)", group="Money Management")
increasingOrderAmount = input.int(defval=200, minval=1, title="Increasing Order Amount ($)", group="Money Management")
//Backtesting period
startDate = input(title="Start Date", defval=timestamp("1 Jan 2017 00:00:00"), group="Backtesting Period")
endDate = input(title="End Date", defval=timestamp("1 July 2024 00:00:00"), group="Backtesting Period")


//-------------------------------------VARIABLES INITIALISATION-----------------------------//

roc = (close/close[rocLength] - 1)*100
midlineConst = 0
var bool inBubble = na
bool shortBubbleCondition = na
equity = strategy.equity - strategy.openprofit
strategy.initial_capital = 50000
var float capital_ref = strategy.initial_capital
var float cashOrder = strategy.initial_capital * 0.95
bool inRange = na


//------------------------------CHECKING SOME CONDITIONS ON EACH SCRIPT EXECUTION-------------------------------//

//Checking if the date belong to the range
inRange := true

//Checking if we are in a bubble
if roc > bubbleValue and not inBubble
    inBubble := true

//Checking if the bubble is over
if roc < 0 and inBubble
    inBubble := false

//Checking the condition to short the bubble : The ROC must be above the bubblevalue for at least 1 week
if roc[1]>bubbleValue and roc[2]>bubbleValue and roc[3]>bubbleValue and roc[4]>bubbleValue and roc[5]>bubbleValue and roc[6]>bubbleValue and roc[7]>bubbleValue
    shortBubbleCondition := true

//Checking performances of the strategy
if equity > capital_ref + fixedRatio
    spread = (equity - capital_ref)/fixedRatio
    nb_level = int(spread)
    increasingOrder = nb_level * increasingOrderAmount
    cashOrder := cashOrder + increasingOrder
    capital_ref := capital_ref + nb_level*fixedRatio
if equity < capital_ref - fixedRatio
    spread = (capital_ref - equity)/fixedRatio
    nb_level = int(spread)
    decreasingOrder = nb_level * increasingOrderAmount
    cashOrder := cashOrder - decreasingOrder
    capital_ref := capital_ref - nb_level*fixedRatio

//Checking if we close all trades in case where we exit the backtesting period
if strategy.position_size!=0 and not inRange
    debugLabel("END OF BACKTESTING PERIOD : we close the trade", color=color.rgb(116, 116, 116), loc=roc)
    strategy.close_all()


//-------------------------------LONG/SHORT CONDITION-------------------------------//

//Long condition
//We reduce noise by taking signal only if the last roc value is in the same side as the current one
if (strategy.position_size<=0 and ta.crossover(roc, midlineConst)[1] and roc>0 and inRange)
    //If we were in a short position, we pass to a long position
    qty = cashOrder/close
    strategy.entry("Long", strategy.long, qty)
    stopLoss = close * (1-stopLossInput/100)
    strategy.exit("Long Risk Managment", "Long", stop=stopLoss)

//Short condition
//We take a short position if we are in a bubble and roc is decreasing
if (strategy.position_size>=0 and ta.crossunder(roc, midlineConst)[1] and roc<0 and inRange) or 
     (strategy.position_size>=0 and inBubble and ta.crossunder(roc, bubbleValue) and shortBubbleCondition and inRange)
    //If we were in a long position, we pass to a short position
    qty = cashOrder/close
    strategy.entry("Short", strategy.short, qty)
    stopLoss = close * (1+stopLossInput/100)
    strategy.exit("Short Risk Managment", "Short", stop=stopLoss)


//--------------------------------RISK MANAGEMENT--------------------------------------//

//We manage our risk and change the sense of position after SL is hitten
if strategy.position_size == 0 and inRange
    //We find the direction of the last trade
    id = strategy.closedtrades.entry_id(strategy.closedtrades-1)
    if id == "Short"
        qty = cashOrder/close
        strategy.entry("Long", strategy.long, qty)
        stopLoss = close * (1-stopLossInput/100)
        strategy.exit("Long Risk Managment", "Long", stop=stopLoss)
    else if id =="Long"
        qty = cashOrder/close
        strategy.entry("Short", strategy.short, qty)
        stopLoss = close * (1+stopLossInput/100)
        strategy.exit("Short Risk Managment", "Short", stop=stopLoss)


//---------------------------------PLOTTING ELEMENTS---------------------------------------//

//Plotting of ROC
rocPlot = plot(roc, "ROC", color=#7E57C2)
midline = hline(0, "ROC Middle Band", color=color.new(#787B86, 25))
midLinePlot = plot(0, color = na, editable = false, display = display.none)
fill(rocPlot, midLinePlot, 40, 0, top_color = strategy.position_size>0 ? color.new(color.green, 0) : strategy.position_size<0 ? color.new(color.red, 0) : na, bottom_color = strategy.position_size>0 ? color.new(color.green, 100) : strategy.position_size<0 ? color.new(color.red, 100) : na,  title = "Positive area")
fill(rocPlot, midLinePlot, 0,  -40,  top_color = strategy.position_size<0 ? color.new(color.red, 100) : strategy.position_size>0 ? color.new(color.green, 100) : na, bottom_color = strategy.position_size<0 ? color.new(color.red, 0) : strategy.position_size>0 ? color.new(color.green, 0) : na, title = "Negative area")


अधिक