Esta estratégia emprega o indicador Kaufman Adaptive Moving Average (KAMA) para projetar um sistema de negociação de tendência. Ele pode rastrear tendências rapidamente quando elas se formam e filtrar o ruído durante mercados agitados. Ao mesmo tempo, o sistema também integra o Parabolic SAR (PSAR) e o Average True Range Trailing Stop como mecanismos de stop loss com fortes capacidades de controle de risco.
A duração do indicador KAMA é ajustada dinamicamente com base na volatilidade recente do mercado. Quando as mudanças de preço são maiores do que o ruído recente, a janela EMA torna-se mais curta. Quando as mudanças de preço são menores do que o ruído recente, a janela EMA torna-se mais longa. Isso permite que a KAMA rastreie rapidamente as tendências enquanto filtra o ruído durante mercados agitados.
O sistema julga principalmente a direção da tendência com base no mais rápido KAMA (KAMA 1). Ele vai longo quando KAMA 1 aponta para cima e vai curto quando KAMA 1 aponta para baixo. Para filtrar falhas, um filtro KAMA é definido. Os sinais de negociação são gerados apenas quando a mudança no KAMA 1 excede um desvio padrão das flutuações recentes.
Para o stop loss, o sistema fornece três métodos opcionais de stop loss: reversão KAMA, reversão PSAR e trailing stop ATR. Os investidores podem escolher um ou uma combinação para usar.
O design exclusivo do indicador KAMA permite que o sistema capture rapidamente as tendências emergentes, pare de negociar durante os mercados agitados, controle efetivamente a frequência de negociação e reduza os custos desnecessários de deslizamento e comissão.
O sistema possui vários mecanismos de stop loss incorporados. Os investidores podem escolher o esquema de stop loss apropriado de acordo com suas preferências pessoais de risco para controlar efetivamente uma única perda.
O sistema baseia-se inteiramente em indicadores e linhas de stop loss, evitando problemas comuns de entrada errada causados por mudanças de transações.
Múltiplas configurações de parâmetros e combinações de condições proporcionam grande espaço para personalização do sistema. Os usuários podem otimizar de acordo com diferentes produtos e frequências.
O sistema não considera os riscos sistémicos e não pode controlar efetivamente as perdas em condições de mercado extremas.
O sistema PARAMETROS poderá ter de ser ajustado de acordo com diferentes produtos e frequências, caso contrário produzirá resultados demasiado agressivos ou demasiado conservadores.
Se depender exclusivamente do indicador KAMA para o stop loss, é fácil ficar preso em problemas durante mercados agitados.
Adicionar indicadores de filtragem da tendência, tais como o ADX ou a volatilidade implícita, para evitar a geração de sinais errados durante as fases de transição de tendência e agitada.
Otimização e backtest PARAMETROS para produtos individuais e frequências fixas para melhorar a estabilidade.
Tente modelos de aprendizagem de máquina em vez de otimização de parâmetros. treinar redes neurais ou modelos de árvore de decisão com muitos dados históricos para julgar entrada e saída de tempo e parar a perda.
Tente migrar a estratégia para outros produtos, como criptomoedas. Isso pode exigir ajustar PARAMETROS ou adicionar outros indicadores auxiliares.
Esta estratégia integra KAMA para julgamento de tendências e vários métodos de stop loss para rastrear efetivamente as direções da tendência e controlar riscos. A singularidade do indicador KAMA permite que a estratégia determine rapidamente a direção das tendências emergentes e evite problemas de falha de ruptura. PARAMETROS personalizáveis e otimizáveis fornecem aos usuários um grande espaço para ajuste personalizado. Ao otimizar PARAMETROS e integrar modelos de aprendizado de máquina para produtos e frequências individuais, o desempenho da estratégia pode ser melhorado.
/*backtest start: 2023-12-01 00:00:00 end: 2023-12-31 23:59:59 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © BenHampson // @version=4 // Credit to: // - ChuckBanger for much of the KAMA code // - cheatcountry for the KAMA Filter code // - millerrh for much of the ATR Stop code // - racer8 for much of the Position Sizing code // I have combined aspects of their work and built upon it to form a strategy I like. // The KAMA, with its filter, is used for entry. // An ATR trailing stop loss, PSAR, and the KAMA can all optionally be used as exits, or you can use a combination of the three. strategy(title="KAMA Strategy - Kaufman's Adaptive Moving Average", shorttitle="KAMA Strategy", overlay=true) src = input(title="Source", type=input.source, defval=close) // Exits KAMA1SL = input(title = 'KAMA 1 Stop Loss', type = input.bool, defval = true) ATRTSL = input(title = 'ATR Trailing Stop Loss', type = input.bool, defval = false) PSARSL = input(title = 'PSAR Stop Loss', type = input.bool, defval = false) // KAMA 1 (Fastest) length1 = input(title="KAMA 1: Length", type=input.integer, defval=14) fastLength1 = input(title="KAMA 1: Fast KAMA Length", type=input.integer, defval=2) slowLength1 = input(title="KAMA 1: Slow KAMA Length", type=input.integer, defval=20) length2 = input(title="KAMA 2: Length 2", type=input.integer, defval=15) fastLength2 = input(title="KAMA 2: Fast KAMA Length", type=input.integer, defval=3) slowLength2 = input(title="KAMA 2: Slow KAMA Length", type=input.integer, defval=22) length3 = input(title="KAMA 3: Length 3", type=input.integer, defval=16) fastLength3 = input(title="KAMA 3: Fast KAMA Length", type=input.integer, defval=4) slowLength3 = input(title="KAMA 3: Slow KAMA Length", type=input.integer, defval=24) length4 = input(title="KAMA 4: Length", type=input.integer, defval=17) fastLength4 = input(title="KAMA 4: Fast KAMA Length", type=input.integer, defval=5) slowLength4 = input(title="KAMA 4: Slow KAMA Length", type=input.integer, defval=26) // KAMA 5 (Medium) length5 = input(title="KAMA 5: Length", type=input.integer, defval=18) fastLength5 = input(title="KAMA 5: Fast KAMA Length", type=input.integer, defval=6) slowLength5 = input(title="KAMA 5: Slow KAMA Length", type=input.integer, defval=28) length6 = input(title="KAMA 6: Length", type=input.integer, defval=19) fastLength6 = input(title="KAMA 6: Fast KAMA Length", type=input.integer, defval=7) slowLength6 = input(title="KAMA 6: Slow KAMA Length", type=input.integer, defval=30) length7 = input(title="KAMA 7: Length", type=input.integer, defval=20) fastLength7 = input(title="KAMA 7: Fast KAMA Length", type=input.integer, defval=8) slowLength7 = input(title="KAMA 7: Slow KAMA Length", type=input.integer, defval=32) // KAMA 8 (Slowest) length8 = input(title="KAMA 8: Length", type=input.integer, defval=21) fastLength8 = input(title="KAMA 8: Fast KAMA Length", type=input.integer, defval=9) slowLength8 = input(title="KAMA 8: Slow KAMA Length", type=input.integer, defval=34) // Kaufman's Adaptive Moving Average getKAMA(src, length1, fastLength1, slowLength1) => mom = abs(change(src, length1)) volatility = sum(abs(change(src)), length1) // Efficiency Ratio er = volatility != 0 ? mom / volatility : 0 fastAlpha = 2 / (fastLength1 + 1) slowAlpha = 2 / (slowLength1 + 1) // KAMA Alpha sc = pow((er * (fastAlpha - slowAlpha)) + slowAlpha, 2) kama = 0.0 kama := sc * src + (1 - sc) * nz(kama[1]) kama kama1 = getKAMA(src, length1, fastLength1, slowLength1) kama2 = getKAMA(src, length2, fastLength2, slowLength2) kama3 = getKAMA(src, length3, fastLength3, slowLength3) kama4 = getKAMA(src, length4, fastLength4, slowLength4) kama5 = getKAMA(src, length5, fastLength5, slowLength5) kama6 = getKAMA(src, length6, fastLength6, slowLength6) kama7 = getKAMA(src, length7, fastLength7, slowLength7) kama8 = getKAMA(src, length8, fastLength8, slowLength8) //If the kama1 has increased... kama1delta = kama1[0] - kama1[1] kama3delta = kama3[0] - kama3[1] kama8delta = kama8[0] - kama8[1] // KAMA Plots plot(kama1, title="KAMA 1", color=#e91e63, display=display.all, linewidth=2) plot(kama2, title="KAMA 2", color=color.red, display=display.all) plot(kama3, title="KAMA 3", color=color.red, display=display.all) plot(kama4, title="KAMA 4", color=color.orange, display=display.all) plot(kama5, title="KAMA 5", color=color.orange, display=display.all) plot(kama6, title="KAMA 6", color=color.yellow, display=display.all) plot(kama7, title="KAMA 7", color=color.yellow, display=display.all) plot(kama8, title="KAMA 8", color=color.white, display=display.all) //========================================= KAMA FILTER =========================================== // Copyright (c) 2019-present, Franklin Moormann (cheatcountry) // Moving Average Adaptive Filter [CC] script may be freely distributed under the MIT license. entryFilter = input(title="KAMA Entry Filter", type=input.float, defval=1, minval=0.01) exitFilter = input(title="KAMA Exit Filter", type=input.float, defval=0.5, minval=0.01) entryMAAF = entryFilter * stdev(kama1delta, length1) exitMAAF = exitFilter * stdev(kama1delta, length1) srcEma = ema(src, length1) //========================================= TRAILING ATR STOP ==================================== // The following is an adaptation of Trailing ATR Stops by @millerrh // He based it on scripts by @garethyeo & @SimpleCryptoLife // Inputs atrLookback = input(defval=14,title="Trailing ATR Lookback Period",type=input.integer) multiplier = input(defval=3,title="Trailing ATR Multiplier",type=input.float, step=0.1, minval=0.5, maxval=4) trailMode = input(title="Trail Mode", defval="Trailing", options=["Running", "Trailing"]) trigInput = input(title="Trigger Trailing Stop On", defval="Wick", options=["Close","Wick"]) // Calculate ATR atrValue = atr(atrLookback) atrMultiplied = atrValue * multiplier // Plot the price minus the ATR atrLow = low - atrMultiplied // Calculate the low trailing ATRs every time. The trailing stop loss never goes down. // Set them to something to start with trailAtrLow = atrLow // If the ATR Low has gone up AND it has gone above the trail, the low trailing ATR should also go up. If the ATR Low has gone up or down, but not below the trail, the ATR trail stays where it is trailAtrLow := na(trailAtrLow[1]) ? trailAtrLow : atrLow >= trailAtrLow[1] ? atrLow : trailAtrLow[1] // Trigger stop based on candle close or low trigSupport = trigInput == "Close" ? close : trigInput == "Wick" ? low : na // Determine if price is below support supportHit = trigSupport <= trailAtrLow // If price is below support, reset the trailing ATR trailAtrLow := supportHit ? atrLow : trailAtrLow // Plot Lines plotLow = ATRTSL ? trailAtrLow : na plot(plotLow, title="ATR Low", color=color.white, transp=50, style=plot.style_linebr, linewidth=1, display=display.all) //====================================== PSAR STOP ========================================== start = input(0.02, "PSAR Start") increment = input(0.02, "PSAR Increment") maximum = input(0.2, "PSAR Max Value") psar = sar(start, increment, maximum) psarPlot = PSARSL ? psar : na plot(psarPlot, "Parabolic SAR", style=plot.style_cross, color=#3A6CA8, display=display.all) //========================================= ENTRY & EXITS ===================================================== // Entry long = kama1delta > 0 and kama1delta > entryMAAF strategy.entry("Buy", true, when = long) // Close longClose = (PSARSL ? crossunder(close, psar) : na) or (KAMA1SL ? kama1delta < 0 and abs(kama1delta) > exitMAAF : na) or (ATRTSL ? supportHit : na) strategy.close("Buy", when = longClose, comment = "Sell")