A estratégia de acompanhamento da tendência das médias móveis dinâmicas triplas utiliza médias móveis límpidas dinâmicas de vários quadros de tempo para identificar as tendências do mercado e obter uma filtragem consistente da tendência em diferentes quadros de tempo, melhorando assim a confiabilidade dos sinais de negociação.
A estratégia emprega 3 médias móveis límpidas dinâmicas com configurações de parâmetros diferentes. A primeira média móvel calcula a direção da tendência dos preços do período atual, a segunda média móvel calcula a direção da tendência dos preços de um quadro de tempo mais alto e a terceira média móvel calcula a direção da tendência dos preços de um quadro de tempo ainda mais alto. Um sinal de compra é gerado quando a primeira média móvel cruza acima da segunda média móvel e a terceira média móvel também está em uma tendência ascendente, o que verifica a confiabilidade do sinal de compra.
A função de suavização dinâmica é usada para calcular e aplicar automaticamente os fatores de suavização apropriados entre diferentes prazos, de modo que as médias móveis de prazos mais altos apresentem linhas de tendência suaves em vez de linhas ziguezagueadas irregularmente nos gráficos de prazos mais baixos.
A maior vantagem desta estratégia reside no seu mecanismo de filtragem de tendências entre os intervalos de tempo. Ao calcular as direções médias de tendência dos preços em diferentes períodos de tempo e exigir consistência entre eles, ele pode efetivamente filtrar as flutuações de preços de curto prazo que interferem com os sinais de negociação, garantindo que cada negociação seja colocada ao longo da tendência principal, melhorando assim significativamente a lucratividade.
Outra vantagem é a aplicação de suavização dinâmica. Isso permite que a estratégia identifique simultaneamente a tendência geral em prazos mais altos e pontos de negociação específicos em prazos mais baixos. A estratégia pode determinar a direção da tendência principal em prazos mais altos enquanto executa negócios específicos em prazos mais baixos. Essa aplicação de vários prazos ajuda a capitalizar as oportunidades de mercado enquanto controla os riscos comerciais.
O principal risco desta estratégia são os relativamente poucos sinais de negociação. As condições estritas de filtragem de tendências reduzem o número de oportunidades de negociação, o que pode não ser adequado para alguns investidores que buscam negociação de alta frequência. A rigor das condições de filtragem pode ser reduzida para obter mais oportunidades de negociação.
Além disso, é necessário testar e otimizar cuidadosamente as configurações dos parâmetros, especialmente os períodos de média móvel, que exigem diferentes valores ideais em diferentes mercados.
As futuras direções de otimização também podem considerar a incorporação de indicadores mais técnicos para filtragem de sinais ou o aumento de algoritmos de aprendizado de máquina para otimização automática de parâmetros.
Em conclusão, esta é uma estratégia de rastreamento de tendências muito prática. A filtragem de tendências entre prazos fornece uma boa orientação direcional para apoiar cada decisão de negociação, reduzindo efetivamente os riscos de negociação. A adição de suavização dinâmica também permite uma implementação eficiente dessa abordagem de vários prazos.
/*backtest start: 2024-01-23 00:00:00 end: 2024-02-22 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © Harrocop //@version=5 strategy(title = "Triple MA HTF strategy - Dynamic Smoothing", shorttitle = "Triple MA strategy", overlay=true, pyramiding=5, initial_capital = 10000, calc_on_order_fills=false, slippage = 0, commission_type=strategy.commission.percent, commission_value=0.05) ////////////////////////////////////////////////////// ////////// Risk Management //////////// ////////////////////////////////////////////////////// RISKM = "-------------------- Risk Management --------------------" InitialBalance = input.float(defval = 10000, title = "Initial Balance", minval = 1, maxval = 1000000, step = 1000, tooltip = "starting capital", group = RISKM) LeverageEquity = input.bool(defval = true, title = "qty based on equity %", tooltip = "true turns on MarginFactor based on equity, false gives fixed qty for positionsize", group = RISKM) MarginFactor = input.float(0, minval = - 0.9, maxval = 100, step = 0.1, tooltip = "Margin Factor, meaning that 0.5 will add 50% extra capital to determine ordersize quantity, 0.0 means 100% of equity is used to decide quantity of instrument", inline = "qty", group = RISKM) QtyNr = input.float(defval = 3.5, title = "Quantity Contracts", minval = 0, maxval = 1000000, step = 0.01, tooltip = "Margin Factor, meaning that 0.5 will add 50% extra capital to determine ordersize quantity, 0.0 means 100% of equity is used to decide quantity of instrument", inline = "qty", group = RISKM) EquityCurrent = InitialBalance + strategy.netprofit[1] QtyEquity = EquityCurrent * (1 + MarginFactor) / close[1] QtyTrade = LeverageEquity ? QtyEquity : QtyNr ///////////////////////////////////////////////////// ////////// MA Filter Trend //////////// ///////////////////////////////////////////////////// TREND = "-------------------- Moving Average 1 --------------------" Plot_MA = input.bool(true, title = "Plot MA trend?", inline = "Trend1", group = TREND) TimeFrame_Trend = input.timeframe(title='Higher Time Frame', defval='15', inline = "Trend1", group = TREND) length = input.int(21, title="Length MA", minval=1, tooltip = "Number of bars used to measure trend on higher timeframe chart", inline = "Trend2", group = TREND) MA_Type = input.string(defval="McGinley" , options=["EMA","DEMA","TEMA","SMA","WMA", "HMA", "McGinley"], title="MA type:", inline = "Trend2", group = TREND) ma(type, src, length) => float result = 0 if type == 'TMA' // Triangular Moving Average result := ta.sma(ta.sma(src, math.ceil(length / 2)), math.floor(length / 2) + 1) result if type == 'LSMA' // Least Squares Moving Average result := ta.linreg(src, length, 0) result if type == 'SMA' // Simple Moving Average result := ta.sma(src, length) result if type == 'EMA' // Exponential Moving Average result := ta.ema(src, length) result if type == 'DEMA' // Double Exponential Moving Average e = ta.ema(src, length) result := 2 * e - ta.ema(e, length) result if type == 'TEMA' // Triple Exponentiale e = ta.ema(src, length) result := 3 * (e - ta.ema(e, length)) + ta.ema(ta.ema(e, length), length) result if type == 'WMA' // Weighted Moving Average result := ta.wma(src, length) result if type == 'HMA' // Hull Moving Average result := ta.wma(2 * ta.wma(src, length / 2) - ta.wma(src, length), math.round(math.sqrt(length))) result if type == 'McGinley' // McGinley Dynamic Moving Average mg = 0.0 mg := na(mg[1]) ? ta.ema(src, length) : mg[1] + (src - mg[1]) / (length * math.pow(src / mg[1], 4)) result := mg result result // Moving Average MAtrend = ma(MA_Type, close, length) MA_Value_HTF = request.security(syminfo.tickerid, TimeFrame_Trend, MAtrend) // Get minutes for current and higher timeframes // Function to convert a timeframe string to its equivalent in minutes timeframeToMinutes(tf) => multiplier = 1 if (str.endswith(tf, "D")) multiplier := 1440 else if (str.endswith(tf, "W")) multiplier := 10080 else if (str.endswith(tf, "M")) multiplier := 43200 else if (str.endswith(tf, "H")) multiplier := int(str.tonumber(str.replace(tf, "H", ""))) else multiplier := int(str.tonumber(str.replace(tf, "m", ""))) multiplier // Get minutes for current and higher timeframes currentTFMinutes = timeframeToMinutes(timeframe.period) higherTFMinutes = timeframeToMinutes(TimeFrame_Trend) // Calculate the smoothing factor dynamicSmoothing = math.round(higherTFMinutes / currentTFMinutes) MA_Value_Smooth = ta.sma(MA_Value_HTF, dynamicSmoothing) // Trend HTF UP = MA_Value_Smooth > MA_Value_Smooth[1] // Use "UP" Function to use as filter in combination with other indicators DOWN = MA_Value_Smooth < MA_Value_Smooth[1] // Use "Down" Function to use as filter in combination with other indicators ///////////////////////////////////////////////////// ////////// Second MA Filter Trend /////////// ///////////////////////////////////////////////////// TREND2 = "-------------------- Moving Average 2 --------------------" Plot_MA2 = input.bool(true, title = "Plot Second MA trend?", inline = "Trend3", group = TREND2) TimeFrame_Trend2 = input.timeframe(title='HTF', defval='60', inline = "Trend3", group = TREND2) length2 = input.int(21, title="Length Second MA", minval=1, tooltip = "Number of bars used to measure trend on higher timeframe chart", inline = "Trend4", group = TREND2) MA_Type2 = input.string(defval="McGinley" , options=["EMA","DEMA","TEMA","SMA","WMA", "HMA", "McGinley"], title="MA type:", inline = "Trend4", group = TREND2) // Second Moving Average MAtrend2 = ma(MA_Type2, close, length2) MA_Value_HTF2 = request.security(syminfo.tickerid, TimeFrame_Trend2, MAtrend2) // Get minutes for current and higher timeframes higherTFMinutes2 = timeframeToMinutes(TimeFrame_Trend2) // Calculate the smoothing factor for the second moving average dynamicSmoothing2 = math.round(higherTFMinutes2 / currentTFMinutes) MA_Value_Smooth2 = ta.sma(MA_Value_HTF2, dynamicSmoothing2) // Trend HTF for the second moving average UP2 = MA_Value_Smooth2 > MA_Value_Smooth2[1] DOWN2 = MA_Value_Smooth2 < MA_Value_Smooth2[1] ///////////////////////////////////////////////////// ////////// Third MA Filter Trend /////////// ///////////////////////////////////////////////////// TREND3 = "-------------------- Moving Average 3 --------------------" Plot_MA3 = input.bool(true, title = "Plot third MA trend?", inline = "Trend5", group = TREND3) TimeFrame_Trend3 = input.timeframe(title='HTF', defval='240', inline = "Trend5", group = TREND3) length3 = input.int(50, title="Length third MA", minval=1, tooltip = "Number of bars used to measure trend on higher timeframe chart", inline = "Trend6", group = TREND3) MA_Type3 = input.string(defval="McGinley" , options=["EMA","DEMA","TEMA","SMA","WMA", "HMA", "McGinley"], title="MA type:", inline = "Trend6", group = TREND3) // Second Moving Average MAtrend3 = ma(MA_Type3, close, length3) MA_Value_HTF3 = request.security(syminfo.tickerid, TimeFrame_Trend3, MAtrend3) // Get minutes for current and higher timeframes higherTFMinutes3 = timeframeToMinutes(TimeFrame_Trend3) // Calculate the smoothing factor for the second moving average dynamicSmoothing3 = math.round(higherTFMinutes3 / currentTFMinutes) MA_Value_Smooth3 = ta.sma(MA_Value_HTF3, dynamicSmoothing3) // Trend HTF for the second moving average UP3 = MA_Value_Smooth3 > MA_Value_Smooth3[1] DOWN3 = MA_Value_Smooth3 < MA_Value_Smooth3[1] ///////////////////////////////////////////////////// ////////// Entry Settings //////////// ///////////////////////////////////////////////////// BuySignal = ta.crossover(MA_Value_HTF, MA_Value_HTF2) and UP3 == true SellSignal = ta.crossunder(MA_Value_HTF, MA_Value_HTF2) and DOWN3 == true ExitBuy = ta.crossunder(MA_Value_HTF, MA_Value_HTF2) ExitSell = ta.crossover(MA_Value_HTF, MA_Value_HTF2) ///////////////////////////////////////////////// /////////// Strategy //////////////// /////////// Entry & Exit //////////////// /////////// logic //////////////// ///////////////////////////////////////////////// // Long if BuySignal strategy.entry("Long", strategy.long, qty = QtyTrade) if (strategy.position_size > 0 and ExitBuy == true) strategy.close(id = "Long", comment = "Close Long") // Short if SellSignal strategy.entry("Short", strategy.short, qty = QtyTrade) if (strategy.position_size < 0 and ExitSell == true) strategy.close(id = "Short", comment = "Close Short") ///////////////////////////////////////////////////// ////////// Visuals Chart //////////// ///////////////////////////////////////////////////// // Plot Moving Average HTF p1 = plot(Plot_MA ? MA_Value_Smooth : na, "HTF Trend", color = UP ? color.rgb(238, 255, 0) : color.rgb(175, 173, 38), linewidth = 1, style = plot.style_line) p2 = plot(Plot_MA2 ? MA_Value_Smooth2 : na, "HTF Trend", color = UP2 ? color.rgb(0, 132, 255) : color.rgb(0, 17, 255), linewidth = 1, style = plot.style_line) plot(Plot_MA3 ? MA_Value_Smooth3 : na, "HTF Trend", color = UP3 ? color.rgb(0, 255, 8) : color.rgb(255, 0, 0), linewidth = 2, style = plot.style_line) fill(p1, p2, color = color.rgb(255, 208, 0, 90), title="Fill")