Les ressources ont été chargées... Je charge...

Stratégie d'apprentissage automatique KNN: Système de trading de prédiction de tendance basé sur l'algorithme K-Nearest Neighbors

Auteur:ChaoZhang est là., Date: 2024-05-15 17h09: 34
Les étiquettes:Nom du produit- Je vous en prie.ATR

img

Résumé

Cette stratégie utilise l'algorithme d'apprentissage automatique K-Nearest Neighbors (KNN) pour prédire les tendances des prix. En sélectionnant différentes méthodes de calcul des prix (telles que HL2, VWAP, SMA, etc.) comme valeurs d'entrée et diverses valeurs cibles (telles que l'action des prix, VWAP, volatilité, etc.) pour l'évaluation, l'algorithme KNN identifie les points de données historiques K les plus proches de l'état actuel du marché.

Principes de stratégie

  1. Sélectionner une méthode de calcul des prix (par exemple, HL2, VWAP, SMA) comme valeur d'entrée pour l'algorithme KNN.
  2. Choisissez une cible d'évaluation (par exemple, action des prix, VWAP, volatilité) comme valeur cible pour l'algorithme KNN.
  3. Définir le nombre de voisins les plus proches (K) et la période de lissage pour ajuster la sensibilité de l'algorithme KNN et la fluidité des résultats de prédiction.
  4. Pour chaque nouveau point de données sur les prix, utiliser l'algorithme KNN pour trouver les K points de données historiques les plus proches de l'état actuel du marché.
  5. Sur la base de la direction de la tendance (hausse ou baisse) de ces points de données K, votez pour obtenir la prédiction de la tendance actuelle du marché.
  6. Lisser les résultats de prédiction en utilisant une moyenne mobile pour améliorer la stabilité.
  7. Générer des signaux de négociation (longs ou courts) basés sur les résultats de prédiction lissés et démontrer visuellement la prédiction de la tendance actuelle du marché par des changements de couleur de fond.

Les avantages

  1. En utilisant un algorithme d'apprentissage automatique, la stratégie peut tirer des leçons des données historiques et prédire les tendances des prix, offrant ainsi adaptabilité et flexibilité.
  2. Les performances de la stratégie peuvent être optimisées pour s'adapter aux différentes conditions du marché en ajustant des paramètres tels que les valeurs d'entrée, les valeurs cibles, le nombre de voisins les plus proches et la période de lissage.
  3. La combinaison des résultats des prédictions avec une moyenne mobile améliore la stabilité et la fiabilité des prédictions.
  4. La prédiction de la tendance actuelle du marché est visuellement démontrée par des changements de couleur de fond, permettant aux traders d'évaluer rapidement les conditions du marché et de prendre des décisions.

Les risques

  1. La performance prédictive de l'algorithme KNN repose sur la qualité et la représentativité des données historiques.
  2. La performance de la stratégie peut être influencée par les paramètres, et des combinaisons inappropriées de paramètres peuvent entraîner de mauvaises performances ou un surajustement.
  3. Lorsque la tendance du marché subit des changements rapides ou que des événements de cygne noir se produisent, les prédictions basées sur des données historiques peuvent devenir inefficaces, ce qui entraîne la génération de signaux de trading incorrects.

Directions d'optimisation

  1. Incorporer davantage d'indicateurs techniques ou de données sur le sentiment du marché comme données d'entrée pour l'algorithme KNN afin d'améliorer la précision et la robustesse des prédictions.
  2. Mettre en œuvre un mécanisme d'adaptation permettant d'ajuster dynamiquement les paramètres de la stratégie en fonction des différentes conditions du marché et des niveaux de volatilité.
  3. Combiner d'autres méthodes d'analyse technique ou mesures de gestion des risques pour réduire l'exposition à la stratégie et améliorer la stabilité des rendements.

Résumé

En appliquant l'algorithme d'apprentissage automatique KNN à la prédiction des tendances des prix, cette stratégie démontre comment capturer les tendances du marché et générer des signaux de trading à l'aide de données historiques et de méthodes statistiques.


/*backtest
start: 2023-05-09 00:00:00
end: 2024-05-14 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/


// This work is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/
// © Blake_22 {

//@version=5
strategy('money printer part 1', overlay=true)

// ~~ Tooltips {
t1 ="PriceValue selects the method of price computation. \n\nSets the smoothing period for the PriceValue. \n\nAdjusting these settings will change the input values for the K-Nearest Neighbors algorithm, influencing how the trend is calculated."
t2 = "TargetValue specifies the target to evaluate. \n\nSets the smoothing period for the TargetValue."
t3 ="numberOfClosestValues sets the number of closest values that are considered when calculating the KNN Moving Average. Adjusting this number will affect the sensitivity of the trend line, with a higher value leading to a smoother line and a lower value resulting in a line that is more responsive to recent price changes."
t4 ="smoothingPeriod sets the period for the moving average applied to the KNN classifier. Adjusting the smoothing period will affect how rapidly the trend line responds to price changes, with a larger smoothing period leading to a smoother line that may lag recent price movements, and a smaller smoothing period resulting in a line that more closely tracks recent changes."
t5 ="This option controls the background color for the trend prediction. Enabling it will change the background color based on the prediction, providing visual cues on the direction of the trend. A green color indicates a positive prediction, while red indicates a negative prediction."
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}

// ~~ Inputs {
PriceValue   = input.string("hl2", options = ["hl2","VWAP", "sma", "wma", "ema", "hma"], group="", inline="Value")
maLen        = input.int(5, minval=2, maxval=200, title="", group="", inline="Value", tooltip=t1)
TargetValue  = input.string("Price Action", options = ["Price Action","VWAP", "Volatility", "sma", "wma", "ema", "hma"], group="", inline="Target")
maLen_       = input.int(5, minval=2, maxval=200, title="", group="", inline="Target", tooltip=t2)
// Input parameters for the KNN Moving Average
numberOfClosestValues = input.int(3, "Number of Closest Values", 2, 200, tooltip=t3) 
smoothingPeriod       = input.int(50, "Smoothing Period", 2, 500, tooltip=t4) 
windowSize            = math.max(numberOfClosestValues, 30) 

// knn Color
Upknn_col   = input.color(color.lime, title="", group="KNN Color", inline="knn col")
Dnknn_col   = input.color(color.red, title="", group="KNN Color", inline="knn col")
Neuknn_col  = input.color(color.orange, title="", group="KNN Color", inline="knn col")
// MA knn Color
Maknn_col   = input.color(color.teal, title="", group="MA KNN Color", inline="MA knn col")
// BG Color
bgcolor = input.bool(false, title="Trend Prediction Color", group="BG Color", inline="bg", tooltip=t5)
Up_col  = input.color(color.lime, title="", group="BG Color", inline="bg")
Dn_col  = input.color(color.red, title="", group="BG Color", inline="bg")
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}

// ~~ kNN Classifier {
value_in = switch PriceValue
    "hl2"  => ta.sma(hl2,maLen)
    "VWAP" => ta.vwap(close[maLen])
    "sma" => ta.sma(close,maLen)
    "wma" => ta.wma(close,maLen)
    "ema" => ta.ema(close,maLen)
    "hma" => ta.hma(close,maLen)

meanOfKClosest(value_,target_) => 
    closestDistances = array.new_float(numberOfClosestValues, 1e10) 
    closestValues    = array.new_float(numberOfClosestValues, 0.0) 
    for i = 1 to windowSize 
        value = value_[i] 
        distance = math.abs(target_ - value) 
        maxDistIndex = 0 
        maxDistValue = closestDistances.get(0) 
        for j = 1 to numberOfClosestValues - 1 
            if closestDistances.get(j) > maxDistValue
                maxDistIndex := j
                maxDistValue := closestDistances.get(j)
        if distance < maxDistValue 
            closestDistances.set(maxDistIndex, distance)
            closestValues.set(maxDistIndex, value)
    closestValues.sum() / numberOfClosestValues 

// Choose the target input based on user selection
target_in = switch TargetValue
    "Price Action"  => ta.rma(close,maLen_) 
    "VWAP"          => ta.vwap(close[maLen_])
    "Volatility"    => ta.atr(14)
    "sma" => ta.sma(close,maLen_)
    "wma" => ta.wma(close,maLen_)
    "ema" => ta.ema(close,maLen_)
    "hma" => ta.hma(close,maLen_)

knnMA = meanOfKClosest(value_in,target_in)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}

// ~~ kNN Prediction {
// Function to calculate KNN Classifier
price = math.avg(knnMA, close)
c     = ta.rma(knnMA[1], smoothingPeriod) 
o     = ta.rma(knnMA, smoothingPeriod)

// Defines KNN function to perform classification
knn(price) => 
    Pos_count = 0 
    Neg_count = 0 
    min_distance = 10e10 
    nearest_index = 0 
    for j = 1 to 10 
        distance = math.sqrt(math.pow(price[j] - price, 2)) 
        if distance < min_distance 
            min_distance := distance
            nearest_index := j
            Neg = c[nearest_index] > o[nearest_index] 
            Pos = c[nearest_index] < o[nearest_index] 
            if Pos 
                Pos_count += 1
            if Neg 
                Neg_count += 1
    output = Pos_count>Neg_count?1:-1 

// Calls KNN function and smooths the prediction
knn_prediction_raw = knn(price) 
knn_prediction     = ta.wma(knn_prediction_raw, 3)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}

// ~~ Plots {
// Plots for display on the chart
knnMA_          = ta.wma(knnMA,5)
knnMA_col       = knnMA_>knnMA_[1]?Upknn_col:knnMA_<knnMA_[1]?Dnknn_col:Neuknn_col
Classifier_Line = plot(knnMA_,"Knn Classifier Line", knnMA_col)
MAknn_          = ta.rma(knnMA, smoothingPeriod)
plot(MAknn_,"Average Knn Classifier Line" ,Maknn_col) 
green = knn_prediction < 0.5
red   = knn_prediction > -0.5 
bgcolor( green and bgcolor? color.new(Dn_col,80) : 
 red and bgcolor ? color.new(Up_col,80) : na) 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}

// ~~ Alerts {
knnMA_cross_Over_Ma      = ta.crossover(knnMA_,MAknn_)
knnMA_cross_Under_Ma     = ta.crossunder(knnMA_,MAknn_)
knnMA_cross_Over_Close   = ta.crossover(knnMA_,close)
knnMA_cross_Under_Close  = ta.crossunder(knnMA_,close)
knnMA_Switch_Up          = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2]
knnMA_Switch_Dn          = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2]
knnMA_Neutral            = knnMA_col==Neuknn_col and knnMA_col[1]!=Neuknn_col
greenBG                  = green and not green[1]
redBG                    = red and not red[1]

alertcondition(knnMA_cross_Over_Ma,  title = "Knn Crossover Average Knn",  message = "Knn Crossover Average Knn")
alertcondition(knnMA_cross_Under_Ma, title = "Knn Crossunder Average Knn", message = "Knn Crossunder Average Knn")
alertcondition(knnMA_cross_Over_Close,  title = "Knn Crossover Close",  message = "Knn Crossover Close")
alertcondition(knnMA_cross_Under_Close, title = "Knn Crossunder Close", message = "Knn Crossunder Close")
alertcondition(knnMA_Switch_Up,  title = "Knn Switch Up",  message = "Knn Switch Up")
alertcondition(knnMA_Switch_Dn, title = "Knn Switch Dn", message = "Knn Switch Dn")
alertcondition(knnMA_Neutral, title = "Knn is Neutral", message = "Knn is Neutral")
alertcondition(greenBG, title = "Positive Prediction", message = "Positive Prediction")
alertcondition(redBG, title = "Negative Prediction", message = "Negative Prediction")
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}

//~~Trenddilo {



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}



//~~ strategy { 1

LongCondtion = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2]
ShortCondtion = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2]


//SecondaryLongCondtion = col == color.lime
//SecondaryShortCondtion = col == color.red

strategy.entry("Long", strategy.long, when = LongCondtion)
strategy.close("Long", when =ShortCondtion)

strategy.entry("Short", strategy.short, when =ShortCondtion)
strategy.close("short", when =LongCondtion)


plot(strategy.equity, title="equity", color=color.red, linewidth=2, style=plot.style_areabr)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}

    


Relationnée

Plus de