이 전략은 가격 추세를 예측하기 위해 K-Nearest Neighbors (KNN) 머신 러닝 알고리즘을 사용합니다. 입력 값과 다양한 목표 값 (가격 액션, VWAP, 변동성 등) 으로 다른 가격 계산 방법 (HL2, VWAP, SMA 등) 을 선택하여 평가하기 위해 KNN 알고리즘은 현재 시장 상태에 가장 가까운 K 역사 데이터 포인트를 식별합니다. 이 전략은 K 데이터 포인트의 트렌드 방향에 따라 길거나 짧은 예측을합니다. 또한 전략은 예측 결과를 매끄럽게하고 안정성을 향상시키기 위해 이동 평균을 적용합니다. 마지막으로 예측 결과에 따라 거래 결정이 이루어지며 현재 시장 트렌드 변화는 배경 색상의 결과를 통해 시각적으로 표시됩니다.
이 전략은 KNN 머신 러닝 알고리즘을 가격 트렌드 예측에 적용함으로써, 시장 트렌드를 캡처하고 역사적 데이터와 통계적 방법을 사용하여 거래 신호를 생성하는 방법을 보여줍니다. 전략의 강점은 다른 시장 조건에 맞게 매개 변수 조정을 통해 최적화 될 수 있기 때문에 적응성과 유연성에 있습니다. 그러나 전략의 위험은 주로 역사적 데이터의 품질과 대표성과 매개 변수 설정의 합리성에서 비롯됩니다. 미래의 개선은 더 많은 지표, 적응 메커니즘 및 위험 관리 조치를 통합하여 전략의 안정성과 수익성을 더욱 향상시킬 수 있습니다.
/*backtest start: 2023-05-09 00:00:00 end: 2024-05-14 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This work is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ // © Blake_22 { //@version=5 strategy('money printer part 1', overlay=true) // ~~ Tooltips { t1 ="PriceValue selects the method of price computation. \n\nSets the smoothing period for the PriceValue. \n\nAdjusting these settings will change the input values for the K-Nearest Neighbors algorithm, influencing how the trend is calculated." t2 = "TargetValue specifies the target to evaluate. \n\nSets the smoothing period for the TargetValue." t3 ="numberOfClosestValues sets the number of closest values that are considered when calculating the KNN Moving Average. Adjusting this number will affect the sensitivity of the trend line, with a higher value leading to a smoother line and a lower value resulting in a line that is more responsive to recent price changes." t4 ="smoothingPeriod sets the period for the moving average applied to the KNN classifier. Adjusting the smoothing period will affect how rapidly the trend line responds to price changes, with a larger smoothing period leading to a smoother line that may lag recent price movements, and a smaller smoothing period resulting in a line that more closely tracks recent changes." t5 ="This option controls the background color for the trend prediction. Enabling it will change the background color based on the prediction, providing visual cues on the direction of the trend. A green color indicates a positive prediction, while red indicates a negative prediction." //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ Inputs { PriceValue = input.string("hl2", options = ["hl2","VWAP", "sma", "wma", "ema", "hma"], group="", inline="Value") maLen = input.int(5, minval=2, maxval=200, title="", group="", inline="Value", tooltip=t1) TargetValue = input.string("Price Action", options = ["Price Action","VWAP", "Volatility", "sma", "wma", "ema", "hma"], group="", inline="Target") maLen_ = input.int(5, minval=2, maxval=200, title="", group="", inline="Target", tooltip=t2) // Input parameters for the KNN Moving Average numberOfClosestValues = input.int(3, "Number of Closest Values", 2, 200, tooltip=t3) smoothingPeriod = input.int(50, "Smoothing Period", 2, 500, tooltip=t4) windowSize = math.max(numberOfClosestValues, 30) // knn Color Upknn_col = input.color(color.lime, title="", group="KNN Color", inline="knn col") Dnknn_col = input.color(color.red, title="", group="KNN Color", inline="knn col") Neuknn_col = input.color(color.orange, title="", group="KNN Color", inline="knn col") // MA knn Color Maknn_col = input.color(color.teal, title="", group="MA KNN Color", inline="MA knn col") // BG Color bgcolor = input.bool(false, title="Trend Prediction Color", group="BG Color", inline="bg", tooltip=t5) Up_col = input.color(color.lime, title="", group="BG Color", inline="bg") Dn_col = input.color(color.red, title="", group="BG Color", inline="bg") //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ kNN Classifier { value_in = switch PriceValue "hl2" => ta.sma(hl2,maLen) "VWAP" => ta.vwap(close[maLen]) "sma" => ta.sma(close,maLen) "wma" => ta.wma(close,maLen) "ema" => ta.ema(close,maLen) "hma" => ta.hma(close,maLen) meanOfKClosest(value_,target_) => closestDistances = array.new_float(numberOfClosestValues, 1e10) closestValues = array.new_float(numberOfClosestValues, 0.0) for i = 1 to windowSize value = value_[i] distance = math.abs(target_ - value) maxDistIndex = 0 maxDistValue = closestDistances.get(0) for j = 1 to numberOfClosestValues - 1 if closestDistances.get(j) > maxDistValue maxDistIndex := j maxDistValue := closestDistances.get(j) if distance < maxDistValue closestDistances.set(maxDistIndex, distance) closestValues.set(maxDistIndex, value) closestValues.sum() / numberOfClosestValues // Choose the target input based on user selection target_in = switch TargetValue "Price Action" => ta.rma(close,maLen_) "VWAP" => ta.vwap(close[maLen_]) "Volatility" => ta.atr(14) "sma" => ta.sma(close,maLen_) "wma" => ta.wma(close,maLen_) "ema" => ta.ema(close,maLen_) "hma" => ta.hma(close,maLen_) knnMA = meanOfKClosest(value_in,target_in) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ kNN Prediction { // Function to calculate KNN Classifier price = math.avg(knnMA, close) c = ta.rma(knnMA[1], smoothingPeriod) o = ta.rma(knnMA, smoothingPeriod) // Defines KNN function to perform classification knn(price) => Pos_count = 0 Neg_count = 0 min_distance = 10e10 nearest_index = 0 for j = 1 to 10 distance = math.sqrt(math.pow(price[j] - price, 2)) if distance < min_distance min_distance := distance nearest_index := j Neg = c[nearest_index] > o[nearest_index] Pos = c[nearest_index] < o[nearest_index] if Pos Pos_count += 1 if Neg Neg_count += 1 output = Pos_count>Neg_count?1:-1 // Calls KNN function and smooths the prediction knn_prediction_raw = knn(price) knn_prediction = ta.wma(knn_prediction_raw, 3) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ Plots { // Plots for display on the chart knnMA_ = ta.wma(knnMA,5) knnMA_col = knnMA_>knnMA_[1]?Upknn_col:knnMA_<knnMA_[1]?Dnknn_col:Neuknn_col Classifier_Line = plot(knnMA_,"Knn Classifier Line", knnMA_col) MAknn_ = ta.rma(knnMA, smoothingPeriod) plot(MAknn_,"Average Knn Classifier Line" ,Maknn_col) green = knn_prediction < 0.5 red = knn_prediction > -0.5 bgcolor( green and bgcolor? color.new(Dn_col,80) : red and bgcolor ? color.new(Up_col,80) : na) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ Alerts { knnMA_cross_Over_Ma = ta.crossover(knnMA_,MAknn_) knnMA_cross_Under_Ma = ta.crossunder(knnMA_,MAknn_) knnMA_cross_Over_Close = ta.crossover(knnMA_,close) knnMA_cross_Under_Close = ta.crossunder(knnMA_,close) knnMA_Switch_Up = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2] knnMA_Switch_Dn = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2] knnMA_Neutral = knnMA_col==Neuknn_col and knnMA_col[1]!=Neuknn_col greenBG = green and not green[1] redBG = red and not red[1] alertcondition(knnMA_cross_Over_Ma, title = "Knn Crossover Average Knn", message = "Knn Crossover Average Knn") alertcondition(knnMA_cross_Under_Ma, title = "Knn Crossunder Average Knn", message = "Knn Crossunder Average Knn") alertcondition(knnMA_cross_Over_Close, title = "Knn Crossover Close", message = "Knn Crossover Close") alertcondition(knnMA_cross_Under_Close, title = "Knn Crossunder Close", message = "Knn Crossunder Close") alertcondition(knnMA_Switch_Up, title = "Knn Switch Up", message = "Knn Switch Up") alertcondition(knnMA_Switch_Dn, title = "Knn Switch Dn", message = "Knn Switch Dn") alertcondition(knnMA_Neutral, title = "Knn is Neutral", message = "Knn is Neutral") alertcondition(greenBG, title = "Positive Prediction", message = "Positive Prediction") alertcondition(redBG, title = "Negative Prediction", message = "Negative Prediction") //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} //~~Trenddilo { //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} //~~ strategy { 1 LongCondtion = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2] ShortCondtion = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2] //SecondaryLongCondtion = col == color.lime //SecondaryShortCondtion = col == color.red strategy.entry("Long", strategy.long, when = LongCondtion) strategy.close("Long", when =ShortCondtion) strategy.entry("Short", strategy.short, when =ShortCondtion) strategy.close("short", when =LongCondtion) plot(strategy.equity, title="equity", color=color.red, linewidth=2, style=plot.style_areabr) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}