Эта стратегия использует алгоритм машинного обучения K-Nearest Neighbors (KNN) для прогнозирования ценовых тенденций. Выбирая различные методы вычисления цен (например, HL2, VWAP, SMA и т. Д.) в качестве входных значений и различные целевые значения (например, price action, VWAP, волатильность и т. Д.) для оценки, алгоритм KNN определяет исторические точки данных K, ближайшие к текущему состоянию рынка. Стратегия затем делает длинные или короткие прогнозы тренда на основе направления этих K точек данных. Кроме того, стратегия применяет скользящую среднюю, чтобы сгладить результаты прогноза и улучшить стабильность.
Применяя алгоритм машинного обучения KNN для прогнозирования ценового тренда, эта стратегия демонстрирует, как улавливать рыночные тенденции и генерировать торговые сигналы с использованием исторических данных и статистических методов. Сила стратегии заключается в ее адаптивности и гибкости, поскольку она может быть оптимизирована с помощью корректировки параметров в соответствии с различными рыночными условиями. Однако риски стратегии в первую очередь зависят от качества и репрезентативности исторических данных, а также разумности настроек параметров. Будущие улучшения могут включать в себя больше показателей, адаптивных механизмов и мер управления рисками для дальнейшего повышения надежности и рентабельности стратегии.
/*backtest start: 2023-05-09 00:00:00 end: 2024-05-14 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This work is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ // © Blake_22 { //@version=5 strategy('money printer part 1', overlay=true) // ~~ Tooltips { t1 ="PriceValue selects the method of price computation. \n\nSets the smoothing period for the PriceValue. \n\nAdjusting these settings will change the input values for the K-Nearest Neighbors algorithm, influencing how the trend is calculated." t2 = "TargetValue specifies the target to evaluate. \n\nSets the smoothing period for the TargetValue." t3 ="numberOfClosestValues sets the number of closest values that are considered when calculating the KNN Moving Average. Adjusting this number will affect the sensitivity of the trend line, with a higher value leading to a smoother line and a lower value resulting in a line that is more responsive to recent price changes." t4 ="smoothingPeriod sets the period for the moving average applied to the KNN classifier. Adjusting the smoothing period will affect how rapidly the trend line responds to price changes, with a larger smoothing period leading to a smoother line that may lag recent price movements, and a smaller smoothing period resulting in a line that more closely tracks recent changes." t5 ="This option controls the background color for the trend prediction. Enabling it will change the background color based on the prediction, providing visual cues on the direction of the trend. A green color indicates a positive prediction, while red indicates a negative prediction." //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ Inputs { PriceValue = input.string("hl2", options = ["hl2","VWAP", "sma", "wma", "ema", "hma"], group="", inline="Value") maLen = input.int(5, minval=2, maxval=200, title="", group="", inline="Value", tooltip=t1) TargetValue = input.string("Price Action", options = ["Price Action","VWAP", "Volatility", "sma", "wma", "ema", "hma"], group="", inline="Target") maLen_ = input.int(5, minval=2, maxval=200, title="", group="", inline="Target", tooltip=t2) // Input parameters for the KNN Moving Average numberOfClosestValues = input.int(3, "Number of Closest Values", 2, 200, tooltip=t3) smoothingPeriod = input.int(50, "Smoothing Period", 2, 500, tooltip=t4) windowSize = math.max(numberOfClosestValues, 30) // knn Color Upknn_col = input.color(color.lime, title="", group="KNN Color", inline="knn col") Dnknn_col = input.color(color.red, title="", group="KNN Color", inline="knn col") Neuknn_col = input.color(color.orange, title="", group="KNN Color", inline="knn col") // MA knn Color Maknn_col = input.color(color.teal, title="", group="MA KNN Color", inline="MA knn col") // BG Color bgcolor = input.bool(false, title="Trend Prediction Color", group="BG Color", inline="bg", tooltip=t5) Up_col = input.color(color.lime, title="", group="BG Color", inline="bg") Dn_col = input.color(color.red, title="", group="BG Color", inline="bg") //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ kNN Classifier { value_in = switch PriceValue "hl2" => ta.sma(hl2,maLen) "VWAP" => ta.vwap(close[maLen]) "sma" => ta.sma(close,maLen) "wma" => ta.wma(close,maLen) "ema" => ta.ema(close,maLen) "hma" => ta.hma(close,maLen) meanOfKClosest(value_,target_) => closestDistances = array.new_float(numberOfClosestValues, 1e10) closestValues = array.new_float(numberOfClosestValues, 0.0) for i = 1 to windowSize value = value_[i] distance = math.abs(target_ - value) maxDistIndex = 0 maxDistValue = closestDistances.get(0) for j = 1 to numberOfClosestValues - 1 if closestDistances.get(j) > maxDistValue maxDistIndex := j maxDistValue := closestDistances.get(j) if distance < maxDistValue closestDistances.set(maxDistIndex, distance) closestValues.set(maxDistIndex, value) closestValues.sum() / numberOfClosestValues // Choose the target input based on user selection target_in = switch TargetValue "Price Action" => ta.rma(close,maLen_) "VWAP" => ta.vwap(close[maLen_]) "Volatility" => ta.atr(14) "sma" => ta.sma(close,maLen_) "wma" => ta.wma(close,maLen_) "ema" => ta.ema(close,maLen_) "hma" => ta.hma(close,maLen_) knnMA = meanOfKClosest(value_in,target_in) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ kNN Prediction { // Function to calculate KNN Classifier price = math.avg(knnMA, close) c = ta.rma(knnMA[1], smoothingPeriod) o = ta.rma(knnMA, smoothingPeriod) // Defines KNN function to perform classification knn(price) => Pos_count = 0 Neg_count = 0 min_distance = 10e10 nearest_index = 0 for j = 1 to 10 distance = math.sqrt(math.pow(price[j] - price, 2)) if distance < min_distance min_distance := distance nearest_index := j Neg = c[nearest_index] > o[nearest_index] Pos = c[nearest_index] < o[nearest_index] if Pos Pos_count += 1 if Neg Neg_count += 1 output = Pos_count>Neg_count?1:-1 // Calls KNN function and smooths the prediction knn_prediction_raw = knn(price) knn_prediction = ta.wma(knn_prediction_raw, 3) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ Plots { // Plots for display on the chart knnMA_ = ta.wma(knnMA,5) knnMA_col = knnMA_>knnMA_[1]?Upknn_col:knnMA_<knnMA_[1]?Dnknn_col:Neuknn_col Classifier_Line = plot(knnMA_,"Knn Classifier Line", knnMA_col) MAknn_ = ta.rma(knnMA, smoothingPeriod) plot(MAknn_,"Average Knn Classifier Line" ,Maknn_col) green = knn_prediction < 0.5 red = knn_prediction > -0.5 bgcolor( green and bgcolor? color.new(Dn_col,80) : red and bgcolor ? color.new(Up_col,80) : na) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ Alerts { knnMA_cross_Over_Ma = ta.crossover(knnMA_,MAknn_) knnMA_cross_Under_Ma = ta.crossunder(knnMA_,MAknn_) knnMA_cross_Over_Close = ta.crossover(knnMA_,close) knnMA_cross_Under_Close = ta.crossunder(knnMA_,close) knnMA_Switch_Up = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2] knnMA_Switch_Dn = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2] knnMA_Neutral = knnMA_col==Neuknn_col and knnMA_col[1]!=Neuknn_col greenBG = green and not green[1] redBG = red and not red[1] alertcondition(knnMA_cross_Over_Ma, title = "Knn Crossover Average Knn", message = "Knn Crossover Average Knn") alertcondition(knnMA_cross_Under_Ma, title = "Knn Crossunder Average Knn", message = "Knn Crossunder Average Knn") alertcondition(knnMA_cross_Over_Close, title = "Knn Crossover Close", message = "Knn Crossover Close") alertcondition(knnMA_cross_Under_Close, title = "Knn Crossunder Close", message = "Knn Crossunder Close") alertcondition(knnMA_Switch_Up, title = "Knn Switch Up", message = "Knn Switch Up") alertcondition(knnMA_Switch_Dn, title = "Knn Switch Dn", message = "Knn Switch Dn") alertcondition(knnMA_Neutral, title = "Knn is Neutral", message = "Knn is Neutral") alertcondition(greenBG, title = "Positive Prediction", message = "Positive Prediction") alertcondition(redBG, title = "Negative Prediction", message = "Negative Prediction") //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} //~~Trenddilo { //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} //~~ strategy { 1 LongCondtion = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2] ShortCondtion = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2] //SecondaryLongCondtion = col == color.lime //SecondaryShortCondtion = col == color.red strategy.entry("Long", strategy.long, when = LongCondtion) strategy.close("Long", when =ShortCondtion) strategy.entry("Short", strategy.short, when =ShortCondtion) strategy.close("short", when =LongCondtion) plot(strategy.equity, title="equity", color=color.red, linewidth=2, style=plot.style_areabr) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}