یہ حکمت عملی قیمت کے رجحانات کی پیش گوئی کے لئے K-Nearest Neighbors (KNN) مشین لرننگ الگورتھم کو استعمال کرتی ہے۔ تشخیص کے لئے مختلف قیمتوں کے حساب کتاب کے طریقوں (جیسے HL2 ، VWAP ، SMA ، وغیرہ) کو ان پٹ اقدار اور مختلف ہدف اقدار (جیسے قیمت کی کارروائی ، VWAP ، اتار چڑھاؤ ، وغیرہ) کے طور پر منتخب کرکے ، KNN الگورتھم موجودہ مارکیٹ کی حالت کے قریب ترین K تاریخی ڈیٹا پوائنٹس کی نشاندہی کرتا ہے۔ اس کے بعد حکمت عملی ان K ڈیٹا پوائنٹس کی رجحان کی سمت کی بنیاد پر لمبی یا مختصر پیش گوئیاں کرتی ہے۔ اس کے علاوہ ، حکمت عملی پیش گوئی کے نتائج کو ہموار کرنے اور استحکام کو بہتر بنانے کے لئے ایک چلتی اوسط لاگو کرتی ہے۔ آخر میں ، پیش گوئی کے نتائج کے مطابق تجارتی فیصلے کیے جاتے ہیں ، اور پس منظر کے رنگ میں موجودہ مارکیٹ کے رجحان کی تبدیلیوں کے ذریعہ موجودہ مارکیٹ کی تبدیلیوں کی پیش گوئی کی جاتی ہے۔
قیمتوں کے رجحان کی پیش گوئی کے لئے کے این این مشین لرننگ الگورتھم کا اطلاق کرتے ہوئے ، یہ حکمت عملی ظاہر کرتی ہے کہ کس طرح مارکیٹ کے رجحانات کو پکڑنا اور تاریخی اعداد و شمار اور شماریاتی طریقوں کا استعمال کرتے ہوئے تجارتی سگنل پیدا کرنا ہے۔ حکمت عملی کی طاقت اس کی موافقت اور لچک میں ہے ، کیونکہ اسے پیرامیٹر ایڈجسٹمنٹ کے ذریعے بہتر بنایا جاسکتا ہے تاکہ مختلف مارکیٹ کے حالات کو پورا کیا جاسکے۔ تاہم ، حکمت عملی کے خطرات بنیادی طور پر تاریخی اعداد و شمار کے معیار اور نمائندگی سے ، نیز پیرامیٹر کی ترتیبات کی معقولیت سے پیدا ہوتے ہیں۔ مستقبل میں بہتری میں مزید اشارے ، موافقت پذیر میکانزم ، اور خطرے کے انتظام کے اقدامات کو شامل کرنا شامل ہوسکتا ہے تاکہ حکمت عملی کی استحکام اور منافع کو مزید بڑھا سکے۔
/*backtest start: 2023-05-09 00:00:00 end: 2024-05-14 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This work is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ // © Blake_22 { //@version=5 strategy('money printer part 1', overlay=true) // ~~ Tooltips { t1 ="PriceValue selects the method of price computation. \n\nSets the smoothing period for the PriceValue. \n\nAdjusting these settings will change the input values for the K-Nearest Neighbors algorithm, influencing how the trend is calculated." t2 = "TargetValue specifies the target to evaluate. \n\nSets the smoothing period for the TargetValue." t3 ="numberOfClosestValues sets the number of closest values that are considered when calculating the KNN Moving Average. Adjusting this number will affect the sensitivity of the trend line, with a higher value leading to a smoother line and a lower value resulting in a line that is more responsive to recent price changes." t4 ="smoothingPeriod sets the period for the moving average applied to the KNN classifier. Adjusting the smoothing period will affect how rapidly the trend line responds to price changes, with a larger smoothing period leading to a smoother line that may lag recent price movements, and a smaller smoothing period resulting in a line that more closely tracks recent changes." t5 ="This option controls the background color for the trend prediction. Enabling it will change the background color based on the prediction, providing visual cues on the direction of the trend. A green color indicates a positive prediction, while red indicates a negative prediction." //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ Inputs { PriceValue = input.string("hl2", options = ["hl2","VWAP", "sma", "wma", "ema", "hma"], group="", inline="Value") maLen = input.int(5, minval=2, maxval=200, title="", group="", inline="Value", tooltip=t1) TargetValue = input.string("Price Action", options = ["Price Action","VWAP", "Volatility", "sma", "wma", "ema", "hma"], group="", inline="Target") maLen_ = input.int(5, minval=2, maxval=200, title="", group="", inline="Target", tooltip=t2) // Input parameters for the KNN Moving Average numberOfClosestValues = input.int(3, "Number of Closest Values", 2, 200, tooltip=t3) smoothingPeriod = input.int(50, "Smoothing Period", 2, 500, tooltip=t4) windowSize = math.max(numberOfClosestValues, 30) // knn Color Upknn_col = input.color(color.lime, title="", group="KNN Color", inline="knn col") Dnknn_col = input.color(color.red, title="", group="KNN Color", inline="knn col") Neuknn_col = input.color(color.orange, title="", group="KNN Color", inline="knn col") // MA knn Color Maknn_col = input.color(color.teal, title="", group="MA KNN Color", inline="MA knn col") // BG Color bgcolor = input.bool(false, title="Trend Prediction Color", group="BG Color", inline="bg", tooltip=t5) Up_col = input.color(color.lime, title="", group="BG Color", inline="bg") Dn_col = input.color(color.red, title="", group="BG Color", inline="bg") //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ kNN Classifier { value_in = switch PriceValue "hl2" => ta.sma(hl2,maLen) "VWAP" => ta.vwap(close[maLen]) "sma" => ta.sma(close,maLen) "wma" => ta.wma(close,maLen) "ema" => ta.ema(close,maLen) "hma" => ta.hma(close,maLen) meanOfKClosest(value_,target_) => closestDistances = array.new_float(numberOfClosestValues, 1e10) closestValues = array.new_float(numberOfClosestValues, 0.0) for i = 1 to windowSize value = value_[i] distance = math.abs(target_ - value) maxDistIndex = 0 maxDistValue = closestDistances.get(0) for j = 1 to numberOfClosestValues - 1 if closestDistances.get(j) > maxDistValue maxDistIndex := j maxDistValue := closestDistances.get(j) if distance < maxDistValue closestDistances.set(maxDistIndex, distance) closestValues.set(maxDistIndex, value) closestValues.sum() / numberOfClosestValues // Choose the target input based on user selection target_in = switch TargetValue "Price Action" => ta.rma(close,maLen_) "VWAP" => ta.vwap(close[maLen_]) "Volatility" => ta.atr(14) "sma" => ta.sma(close,maLen_) "wma" => ta.wma(close,maLen_) "ema" => ta.ema(close,maLen_) "hma" => ta.hma(close,maLen_) knnMA = meanOfKClosest(value_in,target_in) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ kNN Prediction { // Function to calculate KNN Classifier price = math.avg(knnMA, close) c = ta.rma(knnMA[1], smoothingPeriod) o = ta.rma(knnMA, smoothingPeriod) // Defines KNN function to perform classification knn(price) => Pos_count = 0 Neg_count = 0 min_distance = 10e10 nearest_index = 0 for j = 1 to 10 distance = math.sqrt(math.pow(price[j] - price, 2)) if distance < min_distance min_distance := distance nearest_index := j Neg = c[nearest_index] > o[nearest_index] Pos = c[nearest_index] < o[nearest_index] if Pos Pos_count += 1 if Neg Neg_count += 1 output = Pos_count>Neg_count?1:-1 // Calls KNN function and smooths the prediction knn_prediction_raw = knn(price) knn_prediction = ta.wma(knn_prediction_raw, 3) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ Plots { // Plots for display on the chart knnMA_ = ta.wma(knnMA,5) knnMA_col = knnMA_>knnMA_[1]?Upknn_col:knnMA_<knnMA_[1]?Dnknn_col:Neuknn_col Classifier_Line = plot(knnMA_,"Knn Classifier Line", knnMA_col) MAknn_ = ta.rma(knnMA, smoothingPeriod) plot(MAknn_,"Average Knn Classifier Line" ,Maknn_col) green = knn_prediction < 0.5 red = knn_prediction > -0.5 bgcolor( green and bgcolor? color.new(Dn_col,80) : red and bgcolor ? color.new(Up_col,80) : na) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} // ~~ Alerts { knnMA_cross_Over_Ma = ta.crossover(knnMA_,MAknn_) knnMA_cross_Under_Ma = ta.crossunder(knnMA_,MAknn_) knnMA_cross_Over_Close = ta.crossover(knnMA_,close) knnMA_cross_Under_Close = ta.crossunder(knnMA_,close) knnMA_Switch_Up = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2] knnMA_Switch_Dn = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2] knnMA_Neutral = knnMA_col==Neuknn_col and knnMA_col[1]!=Neuknn_col greenBG = green and not green[1] redBG = red and not red[1] alertcondition(knnMA_cross_Over_Ma, title = "Knn Crossover Average Knn", message = "Knn Crossover Average Knn") alertcondition(knnMA_cross_Under_Ma, title = "Knn Crossunder Average Knn", message = "Knn Crossunder Average Knn") alertcondition(knnMA_cross_Over_Close, title = "Knn Crossover Close", message = "Knn Crossover Close") alertcondition(knnMA_cross_Under_Close, title = "Knn Crossunder Close", message = "Knn Crossunder Close") alertcondition(knnMA_Switch_Up, title = "Knn Switch Up", message = "Knn Switch Up") alertcondition(knnMA_Switch_Dn, title = "Knn Switch Dn", message = "Knn Switch Dn") alertcondition(knnMA_Neutral, title = "Knn is Neutral", message = "Knn is Neutral") alertcondition(greenBG, title = "Positive Prediction", message = "Positive Prediction") alertcondition(redBG, title = "Negative Prediction", message = "Negative Prediction") //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} //~~Trenddilo { //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~} //~~ strategy { 1 LongCondtion = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2] ShortCondtion = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2] //SecondaryLongCondtion = col == color.lime //SecondaryShortCondtion = col == color.red strategy.entry("Long", strategy.long, when = LongCondtion) strategy.close("Long", when =ShortCondtion) strategy.entry("Short", strategy.short, when =ShortCondtion) strategy.close("short", when =LongCondtion) plot(strategy.equity, title="equity", color=color.red, linewidth=2, style=plot.style_areabr) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}