Die Ressourcen sind geladen. Beförderung...

Quantitative Handelsstrategie auf Basis der Pivot-Umkehrung

Schriftsteller:ChaoZhang, Datum: 2023-12-12 11:07:46
Tags:

img

Übersicht

Dies ist eine quantitative Handelsstrategie, die Pivot-Punkte als Einstiegssignale verwendet. Sie berechnet steigende Pivot-Punkte und fallende Pivot-Punkte. Sobald der Preis diese Pivot-Punkte durchbricht, wird eine Long- oder Short-Position eingeleitet.

Strategieprinzip

Diese Strategie basiert hauptsächlich auf der Pivot-Reversal-Theorie. Sie berechnet zunächst die Pivot-Punkte basierend auf den linken N-Bars und den rechten M-Bars. Dann überwacht sie in Echtzeit, ob der Preis durch diese Pivot-Punkte bricht.

Wenn der Preis den steigenden Drehpunkt durchbricht, bedeutet dies, dass die Aufwärtsdynamik nicht mehr ausreicht, um den Preis weiter nach oben zu drängen. Zu diesem Zeitpunkt kann ein Short gute Renditen erzielen. Wenn der Preis den fallenden Drehpunkt durchbricht, bedeutet dies, dass die Abwärtsdynamik erschöpft ist. Zu diesem Zeitpunkt kann ein Long eine gute Rendite erzielen.

Diese Strategie berechnet die steigenden und fallenden Pivotpunkte durch die Funktionen ta.pivothigh und ta.pivotlow. Dann wird verglichen, ob der aktuelle höchste Preis den steigenden Pivotpunkt durchbricht und ob der niedrigste Preis den fallenden Pivotpunkt durchbricht. Wenn ein Durchbruch eintritt, wird die entsprechende Long- oder Short-Strategie eingeleitet.

Darüber hinaus verwendet diese Strategie auch Stop-Loss, um Risiken zu kontrollieren. Insbesondere, wenn der Preis durch den Drehpunkt bricht, platziert er sofort eine Order, während er den Stop-Loss auf der anderen Seite des Drehpunkts setzt. Dies kann den durch ein fehlgeschlagenes Signal verursachten Verlust minimieren.

Analyse der Vorteile

Diese auf der Pivot-Umkehrung basierende Strategie hat folgende Vorteile:

  1. Das Pivot-Umkehrsignal ist ziemlich zuverlässig mit einer hohen Gewinnrate
  2. Das Risiko ist mit einer angemessenen Stop-Loss-Einstellung gut kontrolliert
  3. Es ist leicht zu implementieren mit präzisem Code
  4. Es ist auf verschiedene Produkte mit guter Flexibilität anwendbar.

Risikoanalyse

Diese Strategie birgt auch einige Risiken:

  1. Die Drehpunkte können versagen, was zu falschen Signalen führt
  2. Es könnte Rückzug nach dem Brechen des Drehpunktes geben, wodurch Stop-Loss-Trigger
  3. Die Handelsfrequenz kann hoch sein und implizite Handelskosten mit sich bringen
  4. Die Leistung hängt von der Produktauswahl und Parameter-Tuning ab

Zur Verringerung der Risiken können folgende Aspekte berücksichtigt werden:

  1. Optimieren Sie die Anzahl der linken und rechten Balken, um eine zuverlässige Drehpunktberechnung zu gewährleisten
  2. Verringern Sie den Stop-Loss bis zu einem gewissen Grad, um eine Überengung zu vermeiden
  3. Festlegung eines Mindestgewinnziels zur Verringerung des häufigen Hin- und Rückverkehrs
  4. Prüfung auf verschiedenen Produkten und Parametern zur Ermittlung der optimalen Konfiguration

Optimierungsrichtlinien

Diese Strategie kann weiter optimiert werden:

  1. Einbeziehung anderer Indikatoren zur Beurteilung der Zuverlässigkeit von Pivot-Durchbrüchen
  2. Hinzufügen von Modellen für maschinelles Lernen zur Bestimmung von Preistrends
  3. Verwendung von Hochfrequenzdaten zur Verbesserung der Signalempfindlichkeit
  4. Einführung eines Positionsgrößenmoduls zur dynamischen Anpassung der Positionen
  5. Verbinden Sie das detaillierte Kontomodul zur Berechnung der realen Handelskosten

Diese Optimierungen könnten die Gewinnrate, die Rentabilität und die Stabilität der Strategie verbessern.

Schlussfolgerung

Zusammenfassend ist dies eine quantitative Handelsstrategie, die auf der Pivot-Umkehrtheorie basiert. Sie verwendet Preisdurchbruch-Pivotpunkte als Handelssignale, während sie Stop-Loss zur Risikokontrolle anwendet. Diese Strategie ist einfach umzusetzen und weit verbreitet, was sie zu einer praktischen quantitativen Handelsstrategie macht. Aber sie birgt auch einige Risiken und muss weiter getestet und optimiert werden, um die optimale Konfiguration im realen Handel zu finden.


/*backtest
start: 2022-12-05 00:00:00
end: 2023-12-11 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
strategy('Weekly Returns with Benchmark', overlay=true, 
     default_qty_type=strategy.percent_of_equity, default_qty_value=25, 
     commission_type=strategy.commission.percent, commission_value=0.1)

////////////
// Inputs //

// Pivot points inputs
leftBars   = input(2, group = "Pivot Points")
rightBars  = input(1, group = "Pivot Points")

// Styling inputs
prec       = input(1, title='Return Precision',                            group = "Weekly Table")
from_date  = input(timestamp("01 Jan 3000 00:00 +0000"), "From Date", group = "Weekhly Table")
prof_color = input.color(color.green, title = "Gradient Colors", group = "Weeky Table", inline = "colors")
loss_color = input.color(color.red,   title = "",                group = "Weeky Table", inline = "colors")

// Benchmark inputs
use_cur    = input.bool(true,        title = "Use current Symbol for Benchmark", group = "Benchmark")
symb_bench = input('BTC_USDT:swap', title = "Benchmark",                        group = "Benchmark")
disp_bench = input.bool(false,       title = "Display Benchmark?",               group = "Benchmark")
disp_alpha = input.bool(false,       title = "Display Alpha?",                   group = "Benchmark")

// Pivot Points Strategy
swh = ta.pivothigh(leftBars, rightBars)
swl = ta.pivotlow (leftBars, rightBars)

hprice = 0.0
hprice := not na(swh) ? swh : hprice[1]

lprice = 0.0
lprice := not na(swl) ? swl : lprice[1]

le = false
le := not na(swh) ? true : le[1] and high > hprice ? false : le[1]

se = false
se := not na(swl) ? true : se[1] and low < lprice ? false : se[1]

if le
    strategy.entry('PivRevLE', strategy.long, comment='PivRevLE', stop=hprice + syminfo.mintick)

if se
    strategy.entry('PivRevSE', strategy.short, comment='PivRevSE', stop=lprice - syminfo.mintick)

plot(hprice, color=color.new(color.green, 0), linewidth=2)
plot(lprice, color=color.new(color.red, 0), linewidth=2)


///////////////////
// WEEKLY TABLE //

new_week = weekofyear(time[1]) != weekofyear(time)
new_year = year(time) != year(time[1])

eq       = strategy.equity
bench_eq = close

// benchmark eq
bench_eq_htf = request.security(symb_bench, timeframe.period, close)

if (not use_cur)
    bench_eq := bench_eq_htf

bar_pnl   = eq / eq[1] - 1
bench_pnl = bench_eq / bench_eq[1] - 1



// Current Weekly P&L
cur_week_pnl  = 0.0
cur_week_pnl := bar_index == 0 ? 0 : 
                 time >= from_date and (time[1] < from_date or new_week) ? bar_pnl : 
                 (1 + cur_week_pnl[1]) * (1 + bar_pnl) - 1

// Current Yearly P&L
cur_year_pnl  = 0.0
cur_year_pnl := bar_index == 0 ? 0 : 
                 time >= from_date and (time[1] < from_date or new_year) ? bar_pnl : 
                 (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1


// Current Weekly P&L - Bench
bench_cur_week_pnl  = 0.0
bench_cur_week_pnl := bar_index == 0 or (time[1] < from_date and time >= from_date) ? 0 : 
                       time >= from_date and new_week ? bench_pnl : 
                       (1 + bench_cur_week_pnl[1]) * (1 + bench_pnl) - 1 

// Current Yearly P&L - Bench
bench_cur_year_pnl  = 0.0
bench_cur_year_pnl := bar_index == 0 ? 0 : 
                       time >= from_date and (time[1] < from_date  or new_year) ? bench_pnl : 
                       (1 + bench_cur_year_pnl[1]) * (1 + bench_pnl) - 1




var week_time = array.new_int(0)
var year_time = array.new_int(0)

var week_pnl = array.new_float(0)
var year_pnl = array.new_float(0)

var bench_week_pnl = array.new_float(0)
var bench_year_pnl = array.new_float(0)


// Filling weekly / yearly pnl arrays
if array.size(week_time) > 0
    if weekofyear(time) == weekofyear(array.get(week_time, array.size(week_time) - 1))
        array.pop(week_pnl)
        array.pop(bench_week_pnl)
        array.pop(week_time)


if array.size(year_time) > 0
    if year(time) == year(array.get(year_time, array.size(year_time) - 1))
        array.pop(year_pnl)
        array.pop(bench_year_pnl)
        array.pop(year_time)


if (time >= from_date)
    array.push(week_time, time)
    array.push(year_time, time)
    
    array.push(week_pnl, cur_week_pnl)
    array.push(year_pnl, cur_year_pnl)
    
    array.push(bench_year_pnl, bench_cur_year_pnl)
    array.push(bench_week_pnl, bench_cur_week_pnl)


// Weekly P&L Table  

table_size = size.tiny
var weekly_table = table(na)

if array.size(year_pnl) > 0 and barstate.islastconfirmedhistory

    weekly_table := table.new(position.bottom_right, 
                 columns=56, rows=array.size(year_pnl) * 3 + 5, border_width=1)

// Fill weekly performance
    table.cell(weekly_table, 0, 0,  'Perf', 
                 bgcolor = #999999, text_size= table_size)


    for numW = 1 to 53 by 1
        table.cell(weekly_table, numW, 0,  str.tostring(numW), 
                 bgcolor= #999999, text_size= table_size)


    table.cell(weekly_table, 54, 0, ' ',    
                 bgcolor = #999999, text_size= table_size)
    table.cell(weekly_table, 55, 0, 'Year', 
                 bgcolor = #999999, text_size= table_size)

    max_abs_y = math.max(math.abs(array.max(year_pnl)), math.abs(array.min(year_pnl)))
    max_abs_m = math.max(math.abs(array.max(week_pnl)), math.abs(array.min(week_pnl)))

    
    for yi = 0 to array.size(year_pnl) - 1 by 1
        table.cell(weekly_table, 0,  yi + 1,
                 str.tostring(year(array.get(year_time, yi))), 
                 bgcolor=#cccccc, text_size=table_size)
                 
        table.cell(weekly_table, 53, yi + 1, ' ',   
                 bgcolor=#999999, text_size=table_size)
                 
        table.cell(weekly_table, 54, yi + 1, ' ',   
                 bgcolor=#999999, text_size=table_size)

        y_color = color.from_gradient(array.get(year_pnl, yi), -max_abs_y, max_abs_y, loss_color, prof_color) 

        table.cell(weekly_table, 55, yi + 1, 
                 str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), 
                 bgcolor=y_color, text_size=table_size)
    
    int iw_row= na
    int iw_col= na

    for wi = 0 to array.size(week_time) - 2 by 1
        w_row   = year(array.get(week_time, wi)) - year(array.get(year_time, 0)) + 1
        w_col   = weekofyear(array.get(week_time, wi))

        w_color = color.from_gradient(array.get(week_pnl, wi), -max_abs_m, max_abs_m, loss_color, prof_color)
        
        if iw_row + 1 == w_row and iw_col + 1 == w_col
            table.cell(weekly_table, w_col, w_row-1,
                 str.tostring(math.round(array.get(week_pnl, wi) * 100, prec)), 
                 bgcolor=w_color, text_size=table_size)
        else
            table.cell(weekly_table, w_col, w_row,
                 str.tostring(math.round(array.get(week_pnl, wi) * 100, prec)), 
                 bgcolor=w_color, text_size=table_size)
        
        
        iw_row:= w_row
        iw_col:= w_col


    // Fill benchmark performance
    next_row =  array.size(year_pnl) + 1  

    if (disp_bench)
    
        table.cell(weekly_table, 0,  next_row, 'Bench', 
                 bgcolor=#999999, text_size=table_size)
        
        for numW = 1 to 53 by 1
            table.cell(weekly_table, numW, next_row,  str.tostring(numW), 
                 bgcolor= #999999, text_size= table_size)

        table.cell(weekly_table, 54, next_row, ' '   ,   
                 bgcolor = #999999, text_size=table_size)
        table.cell(weekly_table, 55, next_row, 'Year',   
                 bgcolor = #999999, text_size=table_size)
    
        max_bench_abs_y = math.max(math.abs(array.max(bench_year_pnl)), math.abs(array.min(bench_year_pnl)))
        max_bench_abs_w = math.max(math.abs(array.max(bench_week_pnl)), math.abs(array.min(bench_week_pnl)))
    
        for yi = 0 to array.size(year_time) - 1 by 1
            table.cell(weekly_table, 0,  yi + 1 + next_row + 1, 
                 str.tostring(year(array.get(year_time, yi))), 
                 bgcolor=#cccccc, text_size=table_size)

            table.cell(weekly_table, 53, yi + 1 + next_row + 1, ' ',   
                 bgcolor=#999999, text_size=table_size)
            
            table.cell(weekly_table, 54, yi + 1 + next_row + 1, ' ', 
                 bgcolor=#999999, text_size=table_size)
                 
            y_color = color.from_gradient(array.get(bench_year_pnl, yi), -max_bench_abs_y, max_bench_abs_y, loss_color, prof_color)
            table.cell(weekly_table, 55, yi + 1 + next_row + 1, 
                 str.tostring(math.round(array.get(bench_year_pnl, yi) * 100, prec)), 
                 bgcolor=y_color, text_size=table_size)
     
    
        int iw_row1= na
        int iw_col1= na

        for wi = 0 to array.size(week_time) - 1 by 1
            w_row   = year(array.get(week_time, wi)) - year(array.get(year_time, 0)) + 1
            w_col   = weekofyear(array.get(week_time, wi))
        
            w_color = color.from_gradient(array.get(bench_week_pnl, wi), -max_bench_abs_w, max_bench_abs_w, loss_color, prof_color)
    
            if iw_row1 + 1 == w_row and iw_col1 + 1 == w_col
                table.cell(weekly_table, w_col, w_row  + next_row    , 
                 str.tostring(math.round(array.get(bench_week_pnl, wi) * 100, prec)),
                 bgcolor=w_color, text_size=table_size)
            else
                table.cell(weekly_table, w_col, w_row  + next_row + 1, 
                 str.tostring(math.round(array.get(bench_week_pnl, wi) * 100, prec)), 
                 bgcolor=w_color, text_size=table_size)
                
            iw_row1:= w_row
            iw_col1:= w_col
    
    
// Fill Alpha
    if (disp_alpha)
    
        // columns
        next_row :=  array.size(year_pnl) * 2 + 3   
        table.cell(weekly_table, 0,  next_row, 'Alpha', 
                 bgcolor=#999999, text_size= table_size)


        for numW = 1 to 53 by 1
            table.cell(weekly_table, numW, next_row,  str.tostring(numW), 
                 bgcolor= #999999, text_size= table_size)


        table.cell(weekly_table, 54, next_row, ' '   ,  
                 bgcolor=#999999, text_size= table_size)
        table.cell(weekly_table, 55, next_row, 'Year',  
                 bgcolor=#999999, text_size= table_size)
        
        
        
        max_alpha_abs_y = 0.0
        for yi = 0 to array.size(year_time) - 1 by 1
            if (math.abs(array.get(year_pnl, yi)  - array.get(bench_year_pnl, yi)) > max_alpha_abs_y)
                max_alpha_abs_y := math.abs(array.get(year_pnl, yi)  - array.get(bench_year_pnl, yi))
    
        max_alpha_abs_w = 0.0
        for wi = 0 to array.size(week_pnl) - 1 by 1
            if (math.abs(array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) > max_alpha_abs_w)
                max_alpha_abs_w := math.abs(array.get(week_pnl, wi) - array.get(bench_week_pnl, wi))
    
    
        for yi = 0 to array.size(year_time) - 1 by 1
            table.cell(weekly_table, 0,  yi + 1 + next_row + 1, 
                 str.tostring(year(array.get(year_time, yi))), 
                 bgcolor=#cccccc, text_size= table_size)
                 
            table.cell(weekly_table, 53, yi + 1 + next_row + 1, ' ',   
                 bgcolor=#999999, text_size= table_size)
                 
            table.cell(weekly_table, 54, yi + 1 + next_row + 1, ' ',   
                 bgcolor=#999999, text_size= table_size)

            y_color = color.from_gradient(array.get(year_pnl, yi)  - array.get(bench_year_pnl, yi), -max_alpha_abs_y, max_alpha_abs_y, loss_color, prof_color)
            table.cell(weekly_table, 55, yi + 1 + next_row + 1,
                 str.tostring(math.round((array.get(year_pnl, yi)  - array.get(bench_year_pnl, yi)) * 100, prec)), 
                 bgcolor=y_color, text_size= table_size)
     
     
        int iw_row2= na
        int iw_col2= na
        
        for wi = 0 to array.size(week_time) - 1 by 1
            w_row   = year(array.get(week_time, wi)) - year(array.get(year_time, 0)) + 1
            w_col   = weekofyear(array.get(week_time, wi))
            w_color = color.from_gradient(array.get(week_pnl, wi) - array.get(bench_week_pnl, wi), -max_alpha_abs_w, max_alpha_abs_w, loss_color, prof_color)
    
            if iw_row2 + 1 == w_row and iw_col2 + 1 == w_col
                table.cell(weekly_table, w_col, w_row  + next_row , 
                     str.tostring(math.round((array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) * 100, prec)), 
                     bgcolor=w_color, text_size= table_size)
            else
                table.cell(weekly_table, w_col, w_row  + next_row + 1 , 
                     str.tostring(math.round((array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) * 100, prec)), 
                     bgcolor=w_color, text_size= table_size)
        
            iw_row2:= w_row
            iw_col2:= w_col


Mehr