Dies ist eine quantitative Handelsstrategie, die Pivot-Punkte als Einstiegssignale verwendet. Sie berechnet steigende Pivot-Punkte und fallende Pivot-Punkte. Sobald der Preis diese Pivot-Punkte durchbricht, wird eine Long- oder Short-Position eingeleitet.
Diese Strategie basiert hauptsächlich auf der Pivot-Reversal-Theorie. Sie berechnet zunächst die Pivot-Punkte basierend auf den linken N-Bars und den rechten M-Bars. Dann überwacht sie in Echtzeit, ob der Preis durch diese Pivot-Punkte bricht.
Wenn der Preis den steigenden Drehpunkt durchbricht, bedeutet dies, dass die Aufwärtsdynamik nicht mehr ausreicht, um den Preis weiter nach oben zu drängen. Zu diesem Zeitpunkt kann ein Short gute Renditen erzielen. Wenn der Preis den fallenden Drehpunkt durchbricht, bedeutet dies, dass die Abwärtsdynamik erschöpft ist. Zu diesem Zeitpunkt kann ein Long eine gute Rendite erzielen.
Diese Strategie berechnet die steigenden und fallenden Pivotpunkte durch die Funktionen ta.pivothigh und ta.pivotlow. Dann wird verglichen, ob der aktuelle höchste Preis den steigenden Pivotpunkt durchbricht und ob der niedrigste Preis den fallenden Pivotpunkt durchbricht. Wenn ein Durchbruch eintritt, wird die entsprechende Long- oder Short-Strategie eingeleitet.
Darüber hinaus verwendet diese Strategie auch Stop-Loss, um Risiken zu kontrollieren. Insbesondere, wenn der Preis durch den Drehpunkt bricht, platziert er sofort eine Order, während er den Stop-Loss auf der anderen Seite des Drehpunkts setzt. Dies kann den durch ein fehlgeschlagenes Signal verursachten Verlust minimieren.
Diese auf der Pivot-Umkehrung basierende Strategie hat folgende Vorteile:
Diese Strategie birgt auch einige Risiken:
Zur Verringerung der Risiken können folgende Aspekte berücksichtigt werden:
Diese Strategie kann weiter optimiert werden:
Diese Optimierungen könnten die Gewinnrate, die Rentabilität und die Stabilität der Strategie verbessern.
Zusammenfassend ist dies eine quantitative Handelsstrategie, die auf der Pivot-Umkehrtheorie basiert. Sie verwendet Preisdurchbruch-Pivotpunkte als Handelssignale, während sie Stop-Loss zur Risikokontrolle anwendet. Diese Strategie ist einfach umzusetzen und weit verbreitet, was sie zu einer praktischen quantitativen Handelsstrategie macht. Aber sie birgt auch einige Risiken und muss weiter getestet und optimiert werden, um die optimale Konfiguration im realen Handel zu finden.
/*backtest start: 2022-12-05 00:00:00 end: 2023-12-11 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy('Weekly Returns with Benchmark', overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=25, commission_type=strategy.commission.percent, commission_value=0.1) //////////// // Inputs // // Pivot points inputs leftBars = input(2, group = "Pivot Points") rightBars = input(1, group = "Pivot Points") // Styling inputs prec = input(1, title='Return Precision', group = "Weekly Table") from_date = input(timestamp("01 Jan 3000 00:00 +0000"), "From Date", group = "Weekhly Table") prof_color = input.color(color.green, title = "Gradient Colors", group = "Weeky Table", inline = "colors") loss_color = input.color(color.red, title = "", group = "Weeky Table", inline = "colors") // Benchmark inputs use_cur = input.bool(true, title = "Use current Symbol for Benchmark", group = "Benchmark") symb_bench = input('BTC_USDT:swap', title = "Benchmark", group = "Benchmark") disp_bench = input.bool(false, title = "Display Benchmark?", group = "Benchmark") disp_alpha = input.bool(false, title = "Display Alpha?", group = "Benchmark") // Pivot Points Strategy swh = ta.pivothigh(leftBars, rightBars) swl = ta.pivotlow (leftBars, rightBars) hprice = 0.0 hprice := not na(swh) ? swh : hprice[1] lprice = 0.0 lprice := not na(swl) ? swl : lprice[1] le = false le := not na(swh) ? true : le[1] and high > hprice ? false : le[1] se = false se := not na(swl) ? true : se[1] and low < lprice ? false : se[1] if le strategy.entry('PivRevLE', strategy.long, comment='PivRevLE', stop=hprice + syminfo.mintick) if se strategy.entry('PivRevSE', strategy.short, comment='PivRevSE', stop=lprice - syminfo.mintick) plot(hprice, color=color.new(color.green, 0), linewidth=2) plot(lprice, color=color.new(color.red, 0), linewidth=2) /////////////////// // WEEKLY TABLE // new_week = weekofyear(time[1]) != weekofyear(time) new_year = year(time) != year(time[1]) eq = strategy.equity bench_eq = close // benchmark eq bench_eq_htf = request.security(symb_bench, timeframe.period, close) if (not use_cur) bench_eq := bench_eq_htf bar_pnl = eq / eq[1] - 1 bench_pnl = bench_eq / bench_eq[1] - 1 // Current Weekly P&L cur_week_pnl = 0.0 cur_week_pnl := bar_index == 0 ? 0 : time >= from_date and (time[1] < from_date or new_week) ? bar_pnl : (1 + cur_week_pnl[1]) * (1 + bar_pnl) - 1 // Current Yearly P&L cur_year_pnl = 0.0 cur_year_pnl := bar_index == 0 ? 0 : time >= from_date and (time[1] < from_date or new_year) ? bar_pnl : (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1 // Current Weekly P&L - Bench bench_cur_week_pnl = 0.0 bench_cur_week_pnl := bar_index == 0 or (time[1] < from_date and time >= from_date) ? 0 : time >= from_date and new_week ? bench_pnl : (1 + bench_cur_week_pnl[1]) * (1 + bench_pnl) - 1 // Current Yearly P&L - Bench bench_cur_year_pnl = 0.0 bench_cur_year_pnl := bar_index == 0 ? 0 : time >= from_date and (time[1] < from_date or new_year) ? bench_pnl : (1 + bench_cur_year_pnl[1]) * (1 + bench_pnl) - 1 var week_time = array.new_int(0) var year_time = array.new_int(0) var week_pnl = array.new_float(0) var year_pnl = array.new_float(0) var bench_week_pnl = array.new_float(0) var bench_year_pnl = array.new_float(0) // Filling weekly / yearly pnl arrays if array.size(week_time) > 0 if weekofyear(time) == weekofyear(array.get(week_time, array.size(week_time) - 1)) array.pop(week_pnl) array.pop(bench_week_pnl) array.pop(week_time) if array.size(year_time) > 0 if year(time) == year(array.get(year_time, array.size(year_time) - 1)) array.pop(year_pnl) array.pop(bench_year_pnl) array.pop(year_time) if (time >= from_date) array.push(week_time, time) array.push(year_time, time) array.push(week_pnl, cur_week_pnl) array.push(year_pnl, cur_year_pnl) array.push(bench_year_pnl, bench_cur_year_pnl) array.push(bench_week_pnl, bench_cur_week_pnl) // Weekly P&L Table table_size = size.tiny var weekly_table = table(na) if array.size(year_pnl) > 0 and barstate.islastconfirmedhistory weekly_table := table.new(position.bottom_right, columns=56, rows=array.size(year_pnl) * 3 + 5, border_width=1) // Fill weekly performance table.cell(weekly_table, 0, 0, 'Perf', bgcolor = #999999, text_size= table_size) for numW = 1 to 53 by 1 table.cell(weekly_table, numW, 0, str.tostring(numW), bgcolor= #999999, text_size= table_size) table.cell(weekly_table, 54, 0, ' ', bgcolor = #999999, text_size= table_size) table.cell(weekly_table, 55, 0, 'Year', bgcolor = #999999, text_size= table_size) max_abs_y = math.max(math.abs(array.max(year_pnl)), math.abs(array.min(year_pnl))) max_abs_m = math.max(math.abs(array.max(week_pnl)), math.abs(array.min(week_pnl))) for yi = 0 to array.size(year_pnl) - 1 by 1 table.cell(weekly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc, text_size=table_size) table.cell(weekly_table, 53, yi + 1, ' ', bgcolor=#999999, text_size=table_size) table.cell(weekly_table, 54, yi + 1, ' ', bgcolor=#999999, text_size=table_size) y_color = color.from_gradient(array.get(year_pnl, yi), -max_abs_y, max_abs_y, loss_color, prof_color) table.cell(weekly_table, 55, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor=y_color, text_size=table_size) int iw_row= na int iw_col= na for wi = 0 to array.size(week_time) - 2 by 1 w_row = year(array.get(week_time, wi)) - year(array.get(year_time, 0)) + 1 w_col = weekofyear(array.get(week_time, wi)) w_color = color.from_gradient(array.get(week_pnl, wi), -max_abs_m, max_abs_m, loss_color, prof_color) if iw_row + 1 == w_row and iw_col + 1 == w_col table.cell(weekly_table, w_col, w_row-1, str.tostring(math.round(array.get(week_pnl, wi) * 100, prec)), bgcolor=w_color, text_size=table_size) else table.cell(weekly_table, w_col, w_row, str.tostring(math.round(array.get(week_pnl, wi) * 100, prec)), bgcolor=w_color, text_size=table_size) iw_row:= w_row iw_col:= w_col // Fill benchmark performance next_row = array.size(year_pnl) + 1 if (disp_bench) table.cell(weekly_table, 0, next_row, 'Bench', bgcolor=#999999, text_size=table_size) for numW = 1 to 53 by 1 table.cell(weekly_table, numW, next_row, str.tostring(numW), bgcolor= #999999, text_size= table_size) table.cell(weekly_table, 54, next_row, ' ' , bgcolor = #999999, text_size=table_size) table.cell(weekly_table, 55, next_row, 'Year', bgcolor = #999999, text_size=table_size) max_bench_abs_y = math.max(math.abs(array.max(bench_year_pnl)), math.abs(array.min(bench_year_pnl))) max_bench_abs_w = math.max(math.abs(array.max(bench_week_pnl)), math.abs(array.min(bench_week_pnl))) for yi = 0 to array.size(year_time) - 1 by 1 table.cell(weekly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc, text_size=table_size) table.cell(weekly_table, 53, yi + 1 + next_row + 1, ' ', bgcolor=#999999, text_size=table_size) table.cell(weekly_table, 54, yi + 1 + next_row + 1, ' ', bgcolor=#999999, text_size=table_size) y_color = color.from_gradient(array.get(bench_year_pnl, yi), -max_bench_abs_y, max_bench_abs_y, loss_color, prof_color) table.cell(weekly_table, 55, yi + 1 + next_row + 1, str.tostring(math.round(array.get(bench_year_pnl, yi) * 100, prec)), bgcolor=y_color, text_size=table_size) int iw_row1= na int iw_col1= na for wi = 0 to array.size(week_time) - 1 by 1 w_row = year(array.get(week_time, wi)) - year(array.get(year_time, 0)) + 1 w_col = weekofyear(array.get(week_time, wi)) w_color = color.from_gradient(array.get(bench_week_pnl, wi), -max_bench_abs_w, max_bench_abs_w, loss_color, prof_color) if iw_row1 + 1 == w_row and iw_col1 + 1 == w_col table.cell(weekly_table, w_col, w_row + next_row , str.tostring(math.round(array.get(bench_week_pnl, wi) * 100, prec)), bgcolor=w_color, text_size=table_size) else table.cell(weekly_table, w_col, w_row + next_row + 1, str.tostring(math.round(array.get(bench_week_pnl, wi) * 100, prec)), bgcolor=w_color, text_size=table_size) iw_row1:= w_row iw_col1:= w_col // Fill Alpha if (disp_alpha) // columns next_row := array.size(year_pnl) * 2 + 3 table.cell(weekly_table, 0, next_row, 'Alpha', bgcolor=#999999, text_size= table_size) for numW = 1 to 53 by 1 table.cell(weekly_table, numW, next_row, str.tostring(numW), bgcolor= #999999, text_size= table_size) table.cell(weekly_table, 54, next_row, ' ' , bgcolor=#999999, text_size= table_size) table.cell(weekly_table, 55, next_row, 'Year', bgcolor=#999999, text_size= table_size) max_alpha_abs_y = 0.0 for yi = 0 to array.size(year_time) - 1 by 1 if (math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) > max_alpha_abs_y) max_alpha_abs_y := math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) max_alpha_abs_w = 0.0 for wi = 0 to array.size(week_pnl) - 1 by 1 if (math.abs(array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) > max_alpha_abs_w) max_alpha_abs_w := math.abs(array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) for yi = 0 to array.size(year_time) - 1 by 1 table.cell(weekly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc, text_size= table_size) table.cell(weekly_table, 53, yi + 1 + next_row + 1, ' ', bgcolor=#999999, text_size= table_size) table.cell(weekly_table, 54, yi + 1 + next_row + 1, ' ', bgcolor=#999999, text_size= table_size) y_color = color.from_gradient(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi), -max_alpha_abs_y, max_alpha_abs_y, loss_color, prof_color) table.cell(weekly_table, 55, yi + 1 + next_row + 1, str.tostring(math.round((array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) * 100, prec)), bgcolor=y_color, text_size= table_size) int iw_row2= na int iw_col2= na for wi = 0 to array.size(week_time) - 1 by 1 w_row = year(array.get(week_time, wi)) - year(array.get(year_time, 0)) + 1 w_col = weekofyear(array.get(week_time, wi)) w_color = color.from_gradient(array.get(week_pnl, wi) - array.get(bench_week_pnl, wi), -max_alpha_abs_w, max_alpha_abs_w, loss_color, prof_color) if iw_row2 + 1 == w_row and iw_col2 + 1 == w_col table.cell(weekly_table, w_col, w_row + next_row , str.tostring(math.round((array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) * 100, prec)), bgcolor=w_color, text_size= table_size) else table.cell(weekly_table, w_col, w_row + next_row + 1 , str.tostring(math.round((array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) * 100, prec)), bgcolor=w_color, text_size= table_size) iw_row2:= w_row iw_col2:= w_col