该策略的核心思想是结合相对强弱指标(RSI)和布林带这两个技术指标来实现双重交易信号的过滤,在最大程度上减少虚假信号的干扰,提高信号质量。
当RSI指标显示超买或超卖信号,同时价格突破或回调布林带上下轨时,会形成交易机会。它综合了两个不同指标的优势,既考虑了市场波动的统计特征,也关注了市场参与者的多空态势,形成全面的判断依据。
RSI部分,我们同时关注两个不同周期的RSI指标,一个较短周期的用来捕捉超买超卖信号,一个较长周期的用来确认趋势反转。当短周期RSI显示超买超卖且长周期RSI显示反转时,认为形成交易机会。
布林带部分,我们关注价格是否突破上下轨。突破布林带上轨为卖点,突破下轨为买点。同时我们也关注价格是否回调布林带,这样可以及时捕捉反转机会。
当RSI信号和布林带信号同时呈现时,我们就认为交易机会成型,发出交易指令。
可以通过参数优化、适当缩小仓位、人工干预等方式规避和控制风险。
RSI与布林带双重策略充分利用两个指标的优势实现高质量信号的产生,在参数优化和风险管理到位的前提下,可以获得稳定的投资回报。结合更多信号和模型也是未来的可能方向。
/*backtest
start: 2023-11-11 00:00:00
end: 2023-12-04 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
strategy("Ezieh Str.v2", shorttitle="Ezieh Str.v2", overlay=true, pyramiding=10, currency=currency.USD, slippage=3, commission_type=strategy.commission.cash_per_order, commission_value=0.04, initial_capital=1000)
UseDateFilter = input(title="Enable Date Filter" ,type=input.bool ,defval=false ,group="Date & Time" ,tooltip="Turns on/off date filter")
StartDate = input(title="Start Date Filter" ,type=input.time ,defval=timestamp("1 Jan 2000 00:00 +0000") ,group="Date & Time" ,tooltip="Date & time to start excluding trades")
EndDate = input(title="End Date Filter" ,type=input.time ,defval=timestamp("1 Jan 2100 00:00 +0000") ,group="Date & Time" ,tooltip="Date & time to stop excluding trades")
UseTimeFilter = input(title="Enable Time Session Filter" ,type=input.bool ,defval=false ,group="Date & Time" ,tooltip="Turns on/off time session filter")
TradingSession = input(title="Trading Session" ,type=input.session ,defval="1000-2200:1234567" ,group="Date & Time" ,tooltip="No trades will be taken outside of this range")
In(t) => na(time(timeframe.period, t)) == false
TimeFilter = (UseTimeFilter and not In(TradingSession)) or not UseTimeFilter
DateFilter = time >= StartDate and time <= EndDate
DateTime = (UseDateFilter ? not DateFilter : true) and (UseTimeFilter ? In(TradingSession) : true)
///////////// RSI
L_RSI_Length = input(7 , title="L_Length")
L_RSI_OverSold = input(45 , title="L_OverSold")
S_RSI_Length = input(14 , title="S_Length")
S_RSI_OverBought = input(65 , title="S_OverBought")
price = close
Lvrsi = rsi(price, L_RSI_Length)
Svrsi = rsi(price, S_RSI_Length)
///////////// Bollinger Bands
BBlength = input(title="Bollinger Period Length", type=input.integer, defval=100, minval=2)
BBmult = 2.1 // input(2.0, minval=0.001, maxval=50,title="Bollinger Bands Standard Deviation")
BBbasis = sma(price, BBlength)
BBdev = BBmult * stdev(price, BBlength)
BBupper = BBbasis + BBdev
BBlower = BBbasis - BBdev
source = close
plot(BBbasis, color=color.aqua,title="Bollinger Bands SMA Basis Line")
p1 = plot(BBupper, color=color.silver,title="Bollinger Bands Upper Line")
p2 = plot(BBlower, color=color.silver,title="Bollinger Bands Lower Line")
fill(p1, p2)
///////////// Colors
switch1=input(true, title="Enable Bar Color?")
switch2=input(true, title="Enable Background Color?")
///////////// Condition
LongCondition = crossover(Lvrsi, L_RSI_OverSold) and crossover(close ,BBlower)
ShortCondition = crossunder(Svrsi, S_RSI_OverBought) and crossunder(close,BBupper)
Longexcon = crossunder(low, BBupper)
Shortexcon = crossover(low, BBlower)
qt = round(strategy.equity/price, 3)
///////////// RSI + Bollinger Bands Strategy
if (not na(Lvrsi))
if LongCondition and DateTime
strategy.entry("RSI_BB_L", strategy.long, qty=qt, comment="Long")
else
strategy.cancel(id="RSI_BB_L")
if Longexcon
strategy.close("RSI_BB_L", qty_percent = 100, comment = "L_exit")
if ShortCondition and DateTime
strategy.entry("RSI_BB_S", strategy.short, qty=qt, comment="Short")
else
strategy.cancel(id="RSI_BB_S")
if Shortexcon
strategy.close("RSI_BB_S", qty_percent = 100, comment = "S_exit")
//plot(strategy.equity, title="equity", color=red, linewidth=2, style=areabr)