This strategy is a trading system based on multiple technical indicators, integrating CCI, RSI, Stochastic, and MFI indicators with exponential smoothing to build a comprehensive market analysis framework. The strategy uses IFT (Inverse Fisher Transform) to normalize indicator outputs and generates trading decisions through signal synthesis.
The core of the strategy is to provide more reliable trading signals through multi-indicator fusion. The process includes: 1. Calculate and normalize CCI, RSI, Stochastic, and MFI indicators 2. Apply WMA smoothing to indicator values 3. Transform values to a unified interval using IFT 4. Calculate the average of four transformed indicators as final signal 5. Generate long signals when crossing -0.5 and short signals when crossing 0.5 6. Set 0.5% stop-loss and 1% take-profit for risk control
The strategy builds a relatively complete trading system through multi-indicator fusion and signal optimization. Its strengths lie in signal reliability and comprehensive risk control, but parameters still need optimization based on market characteristics. Through the suggested optimization directions, the strategy has the potential to perform better in various market environments.
/*backtest start: 2024-11-19 00:00:00 end: 2024-12-18 08:00:00 period: 4h basePeriod: 4h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy('wombocombo', overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=100) // IFTCOMBO Hesaplamaları ccilength = input.int(5, 'CCI Length') wmalength = input.int(9, 'Smoothing Length') rsilength = input.int(5, 'RSI Length') stochlength = input.int(5, 'STOCH Length') mfilength = input.int(5, 'MFI Length') // CCI v11 = 0.1 * (ta.cci(close, ccilength) / 4) v21 = ta.wma(v11, wmalength) INV1 = (math.exp(2 * v21) - 1) / (math.exp(2 * v21) + 1) // RSI v12 = 0.1 * (ta.rsi(close, rsilength) - 50) v22 = ta.wma(v12, wmalength) INV2 = (math.exp(2 * v22) - 1) / (math.exp(2 * v22) + 1) // Stochastic v1 = 0.1 * (ta.stoch(close, high, low, stochlength) - 50) v2 = ta.wma(v1, wmalength) INVLine = (math.exp(2 * v2) - 1) / (math.exp(2 * v2) + 1) // MFI source = hlc3 up = math.sum(volume * (ta.change(source) <= 0 ? 0 : source), mfilength) lo = math.sum(volume * (ta.change(source) >= 0 ? 0 : source), mfilength) mfi = 100.0 - 100.0 / (1.0 + up / lo) v13 = 0.1 * (mfi - 50) v23 = ta.wma(v13, wmalength) INV3 = (math.exp(2 * v23) - 1) / (math.exp(2 * v23) + 1) // Ortalama IFTCOMBO değeri AVINV = (INV1 + INV2 + INVLine + INV3) / 4 // Sinyal çizgileri hline(0.5, color=color.red, linestyle=hline.style_dashed) hline(-0.5, color=color.green, linestyle=hline.style_dashed) // IFTCOMBO çizgisi plot(AVINV, color=color.red, linewidth=2, title='IFTCOMBO') // Long Trading Sinyalleri longCondition = ta.crossover(AVINV, -0.5) longCloseCondition = ta.crossunder(AVINV, 0.5) // Short Trading Sinyalleri shortCondition = ta.crossunder(AVINV, 0.5) shortCloseCondition = ta.crossover(AVINV, -0.5) // Stop-loss seviyesi (%0.5 kayıp) stopLoss = strategy.position_avg_price * (1 - 0.005) // Long için takeProfit = strategy.position_avg_price * (1 + 0.01) // Long için // Long Strateji Kuralları if longCondition strategy.entry('Long', strategy.long) strategy.exit('Long Exit', 'Long', stop=stopLoss, limit=takeProfit) // Stop-loss eklendi if longCloseCondition strategy.close('Long') // Stop-loss seviyesi (%0.5 kayıp) stopLossShort = strategy.position_avg_price * (1 + 0.005) // Short için takeProfitShort = strategy.position_avg_price * (1 - 0.01) // Short için // Short Strateji Kuralları if shortCondition strategy.entry('Short', strategy.short) strategy.exit('Short Exit', 'Short', stop=stopLossShort, limit=takeProfitShort) // Stop-loss eklendi if shortCloseCondition strategy.close('Short') // Sinyal noktalarını plotlama plotshape(longCondition, title='Long Signal', location=location.belowbar, color=color.purple, size=size.small) plotshape(shortCondition, title='Short Signal', location=location.abovebar, color=color.yellow, size=size.small)