La estrategia de seguimiento de tendencias del canal de Gauss es una estrategia de seguimiento de tendencias basada en el indicador del canal de Gauss. La estrategia tiene como objetivo capturar las principales tendencias en el mercado, comprando y manteniendo posiciones durante las tendencias alcistas y cerrando posiciones durante las tendencias bajistas. Utiliza el indicador del canal de Gauss para identificar la dirección y la fuerza de la tendencia mediante el análisis de la relación entre el precio y las bandas superior e inferior del canal. El objetivo principal de la estrategia es maximizar las ganancias durante las tendencias sostenidas al tiempo que se minimiza la frecuencia durante los mercados de trading de rango.
El núcleo de la estrategia de seguimiento de tendencia del canal de Gauss es el indicador del canal de Gauss, que fue propuesto por Ehlers. Combina técnicas de filtrado de Gauss con el rango verdadero para analizar la actividad de la tendencia. El indicador primero calcula los valores beta y alfa basados en el período de muestreo y el número de polos, luego aplica un filtro a los datos para obtener una curva suavizada (línea media). A continuación, la estrategia multiplica el rango verdadero suavizado por un multiplicador para generar los canales superior e inferior. Cuando el precio cruza por encima / por debajo del canal superior / inferior, genera una señal de compra / venta. Además, la estrategia ofrece características para reducir el retraso del indicador y un modo de respuesta rápida.
La estrategia de seguimiento de tendencias del canal de Gauss es una estrategia de seguimiento de tendencias basada en técnicas de filtrado de Gauss, que tiene como objetivo capturar las principales tendencias del mercado para obtener rendimientos estables a largo plazo. La estrategia utiliza el indicador del canal de Gauss para identificar la dirección y la fuerza de la tendencia, al tiempo que ofrece características para reducir el retraso y proporcionar una respuesta rápida. Las ventajas de la estrategia se encuentran en su fuerte capacidad de seguimiento de tendencias y baja frecuencia de negociación. Sin embargo, también enfrenta riesgos como optimización de parámetros, inversiones de tendencia y mercados de rango. Las optimizaciones futuras pueden incluir la incorporación de otros indicadores técnicos, optimización de parámetros dinámicos, adición de módulos de control de riesgos y análisis de marcos de tiempo múltiples para mejorar aún más la robustez y rentabilidad de la estrategia.
/*backtest start: 2023-03-23 00:00:00 end: 2024-03-28 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title="Gaussian Channel Strategy v2.0", overlay=true, calc_on_every_tick=false, initial_capital=1000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1, slippage=3) //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Gaussian Channel Indicaor - courtesy of @DonovanWall //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Date condition inputs startDate = input(timestamp("1 January 2018 00:00 +0000"), "Date Start", group="Main Algo Settings") endDate = input(timestamp("1 January 2060 00:00 +0000"), "Date Start", group="Main Algo Settings") timeCondition = true // This study is an experiment utilizing the Ehlers Gaussian Filter technique combined with lag reduction techniques and true range to analyze trend activity. // Gaussian filters, as Ehlers explains it, are simply exponential moving averages applied multiple times. // First, beta and alpha are calculated based on the sampling period and number of poles specified. The maximum number of poles available in this script is 9. // Next, the data being analyzed is given a truncation option for reduced lag, which can be enabled with "Reduced Lag Mode". // Then the alpha and source values are used to calculate the filter and filtered true range of the dataset. // Filtered true range with a specified multiplier is then added to and subtracted from the filter, generating a channel. // Lastly, a one pole filter with a N pole alpha is averaged with the filter to generate a faster filter, which can be enabled with "Fast Response Mode". // Custom bar colors are included. // Note: Both the sampling period and number of poles directly affect how much lag the indicator has, and how smooth the output is. // Larger inputs will result in smoother outputs with increased lag, and smaller inputs will have noisier outputs with reduced lag. // For the best results, I recommend not setting the sampling period any lower than the number of poles + 1. Going lower truncates the equation. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Updates: // Huge shoutout to @e2e4mfck for taking the time to improve the calculation method! // -> migrated to v4 // -> pi is now calculated using trig identities rather than being explicitly defined. // -> The filter calculations are now organized into functions rather than being individually defined. // -> Revamped color scheme. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Functions - courtesy of @e2e4mfck //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Filter function f_filt9x (_a, _s, _i) => int _m2 = 0, int _m3 = 0, int _m4 = 0, int _m5 = 0, int _m6 = 0, int _m7 = 0, int _m8 = 0, int _m9 = 0, float _f = .0, _x = (1 - _a) // Weights. // Initial weight _m1 is a pole number and equal to _i _m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0 _m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0 _m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0 _m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0 _m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0 _m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0 _m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0 _m9 := _i == 9 ? 1 : 0 // filter _f := math.pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * math.pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * math.pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * math.pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * math.pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * math.pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * math.pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * math.pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * math.pow(_x, 9) * nz(_f[9]) : 0) // 9 var declaration fun f_pole (_a, _s, _i) => _f1 = f_filt9x(_a, _s, 1), _f2 = (_i >= 2 ? f_filt9x(_a, _s, 2) : 0), _f3 = (_i >= 3 ? f_filt9x(_a, _s, 3) : 0) _f4 = (_i >= 4 ? f_filt9x(_a, _s, 4) : 0), _f5 = (_i >= 5 ? f_filt9x(_a, _s, 5) : 0), _f6 = (_i >= 6 ? f_filt9x(_a, _s, 6) : 0) _f7 = (_i >= 2 ? f_filt9x(_a, _s, 7) : 0), _f8 = (_i >= 8 ? f_filt9x(_a, _s, 8) : 0), _f9 = (_i == 9 ? f_filt9x(_a, _s, 9) : 0) _fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na [_fn, _f1] //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Inputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Source src = input(defval=hlc3, title="Source") // Poles int N = input.int(defval=4, title="Poles", minval=1, maxval=9) // Period int per = input.int(defval=144, title="Sampling Period", minval=2) // True Range Multiplier float mult = input.float(defval=1.414, title="Filtered True Range Multiplier", minval=0) // Lag Reduction bool modeLag = input.bool(defval=false, title="Reduced Lag Mode") bool modeFast = input.bool(defval=false, title="Fast Response Mode") //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Definitions //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Beta and Alpha Components beta = (1 - math.cos(4*math.asin(1)/per)) / (math.pow(1.414, 2/N) - 1) alpha = - beta + math.sqrt(math.pow(beta, 2) + 2*beta) // Lag lag = (per - 1)/(2*N) // Data srcdata = modeLag ? src + (src - src[lag]) : src trdata = modeLag ? ta.tr(true) + (ta.tr(true) - ta.tr(true)[lag]) : ta.tr(true) // Filtered Values [filtn, filt1] = f_pole(alpha, srcdata, N) [filtntr, filt1tr] = f_pole(alpha, trdata, N) // Lag Reduction filt = modeFast ? (filtn + filt1)/2 : filtn filttr = modeFast ? (filtntr + filt1tr)/2 : filtntr // Bands hband = filt + filttr*mult lband = filt - filttr*mult // Colors color1 = #0aff68 color2 = #00752d color3 = #ff0a5a color4 = #990032 fcolor = filt > filt[1] ? #0aff68 : filt < filt[1] ? #ff0a5a : #cccccc barcolor = (src > src[1]) and (src > filt) and (src < hband) ? #0aff68 : (src > src[1]) and (src >= hband) ? #0aff1b : (src <= src[1]) and (src > filt) ? #00752d : (src < src[1]) and (src < filt) and (src > lband) ? #ff0a5a : (src < src[1]) and (src <= lband) ? #ff0a11 : (src >= src[1]) and (src < filt) ? #990032 : #cccccc //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Outputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Filter Plot filtplot = plot(filt, title="Filter", color=fcolor, linewidth=3) // Band Plots hbandplot = plot(hband, title="Filtered True Range High Band", color=fcolor) lbandplot = plot(lband, title="Filtered True Range Low Band", color=fcolor) // Channel Fill fill(hbandplot, lbandplot, title="Channel Fill", color=color.new(fcolor, 80)) // Bar Color barcolor(barcolor) longCondition = ta.crossover(close, hband) and timeCondition closeAllCondition = ta.crossunder(close, hband) and timeCondition if longCondition strategy.entry("long", strategy.long) if closeAllCondition strategy.close("long")