Model Tiga Faktor untuk Deteksi Osilasi Harga adalah strategi perdagangan jangka pendek yang mengintegrasikan beberapa faktor untuk penilaian. Strategi ini memperhitungkan faktor seperti rasio volume, RSI, MACD, dan garis sinyal untuk mendeteksi osilasi harga dan menemukan peluang perdagangan jangka pendek.
Logika inti dari strategi ini adalah:
Menghitung indikator teknis seperti MA cepat, MA lambat, MACD, dan garis sinyal;
menilai kondisi faktor ganda termasuk rasio volume, RSI, MACD dan garis sinyal;
Mengkonfirmasi tahap osilasi harga saat ini dan peluang membeli/menjual berdasarkan analisis beberapa faktor;
Mengambil posisi LONG atau SHORT dan menetapkan mengambil keuntungan dan stop loss;
Tutup posisi ketika harga mencapai mengambil keuntungan atau stop loss.
Strategi ini secara fleksibel menggunakan faktor-faktor seperti rasio volume, RSI, MACD dan garis sinyal untuk mendeteksi osilasi harga dan menangkap peluang jangka pendek.
Keuntungan dari strategi ini:
Risiko dari strategi ini:
Untuk mengatasi risiko di atas, optimasi dapat dilakukan di:
Arah utama optimasi:
Mengoptimalkan bobot faktor secara dinamis. Bobot dapat disesuaikan berdasarkan kondisi pasar untuk meningkatkan kemampuan beradaptasi;
Memperkenalkan algoritma pembelajaran mesin untuk mencapai optimasi adaptif faktor. Algoritma seperti jaringan saraf dan algoritma genetik dapat digunakan untuk melatih model dan mengoptimalkan parameter;
Mengoptimalkan strategi stop loss. Kombinasi yang berbeda dari stop loss pelacakan dan stop loss bergerak dapat diuji untuk menemukan solusi terbaik;
Masukkan indikator teknis canggih. Lebih banyak indikator seperti volatilitas berayun dan momentum osilasi dapat memperkaya faktor.
Model Tiga Faktor untuk Deteksi Osilasi Harga sepenuhnya memanfaatkan karakteristik osilasi harga untuk menerapkan strategi perdagangan jangka pendek yang efisien. Ini menilai titik masuk dan keluar terbaik berdasarkan beberapa faktor seperti volume, RSI, MACD dan garis sinyal. Beberapa faktor meningkatkan akurasi dan mengarah pada pengembalian yang stabil. Optimasi lebih lanjut dapat dilakukan melalui pembelajaran mesin untuk optimasi adaptif, menghasilkan kinerja strategi yang lebih baik.
/*backtest start: 2024-01-26 00:00:00 end: 2024-02-25 00:00:00 period: 4h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("3 10.0 Oscillator Profile Flagging", shorttitle="3 10.0 Oscillator Profile Flagging", overlay=false) signalBiasValue = input(title="Signal Bias", defval=0.26) macdBiasValue = input(title="MACD Bias", defval=0.7) shortLookBack = input( title="Short LookBack", defval=3) longLookBack = input( title="Long LookBack", defval=6) takeProfit = input( title="Take Profit", defval=2) stopLoss = input( title="Stop Loss", defval=0.7) fast_ma = ta.sma(close, 3) slow_ma = ta.sma(close, 10) macd = fast_ma - slow_ma signal = ta.sma(macd, 16) hline(0, "Zero Line", color = color.black) buyVolume = volume*((close-low)/(high-low)) sellVolume = volume*((high-close)/(high-low)) buyVolSlope = buyVolume - buyVolume[1] sellVolSlope = sellVolume - sellVolume[1] signalSlope = ( signal - signal[1] ) macdSlope = ( macd - macd[1] ) plot(macd, color=color.blue, title="Total Volume") plot(signal, color=color.orange, title="Total Volume") plot(macdSlope, color=color.green, title="MACD Slope") plot(signalSlope, color=color.red, title="Signal Slope") intrabarRange = high - low rsi = ta.rsi(close, 14) rsiSlope = rsi - rsi[1] plot(rsiSlope, color=color.black, title="RSI Slope") getRSISlopeChange(lookBack) => j = 0 for i = 0 to lookBack if ( rsi[i] - rsi[ i + 1 ] ) > -5 j += 1 j getBuyerVolBias(lookBack) => j = 0 for i = 1 to lookBack if buyVolume[i] > sellVolume[i] j += 1 j getSellerVolBias(lookBack) => j = 0 for i = 1 to lookBack if sellVolume[i] > buyVolume[i] j += 1 j getVolBias(lookBack) => float b = 0.0 float s = 0.0 for i = 1 to lookBack b += buyVolume[i] s += sellVolume[i] b > s getSignalBuyerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] > signalBiasValue j += 1 j getSignalSellerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < ( 0.0 - signalBiasValue ) j += 1 j getSignalNoBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < signalBiasValue and signal[i] > ( 0.0 - signalBiasValue ) j += 1 j getPriceRising(lookBack) => j = 0 for i = 1 to lookBack if close[i] > close[i + 1] j += 1 j getPriceFalling(lookBack) => j = 0 for i = 1 to lookBack if close[i] < close[i + 1] j += 1 j getRangeNarrowing(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] < intrabarRange[i + 1] j+= 1 j getRangeBroadening(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] > intrabarRange[i + 1] j+= 1 j bool isNegativeSignalReversal = signalSlope < 0.0 and signalSlope[1] > 0.0 bool isNegativeMacdReversal = macdSlope < 0.0 and macdSlope[1] > 0.0 bool isPositiveSignalReversal = signalSlope > 0.0 and signalSlope[1] < 0.0 bool isPositiveMacdReversal = macdSlope > 0.0 and macdSlope[1] < 0.0 bool hasBearInversion = signalSlope > 0.0 and macdSlope < 0.0 bool hasBullInversion = signalSlope < 0.0 and macdSlope > 0.0 bool hasSignalBias = math.abs(signal) >= signalBiasValue bool hasNoSignalBias = signal < signalBiasValue and signal > ( 0.0 - signalBiasValue ) bool hasSignalBuyerBias = hasSignalBias and signal > 0.0 bool hasSignalSellerBias = hasSignalBias and signal < 0.0 bool hasPositiveMACDBias = macd > macdBiasValue bool hasNegativeMACDBias = macd < ( 0.0 - macdBiasValue ) bool hasBullAntiPattern = ta.crossunder(macd, signal) bool hasBearAntiPattern = ta.crossover(macd, signal) bool hasSignificantBuyerVolBias = buyVolume > ( sellVolume * 1.5 ) bool hasSignificantSellerVolBias = sellVolume > ( buyVolume * 1.5 ) // 202.30 Profit 55.29% 5m if ( ( getVolBias(longLookBack) == false ) and rsi <= 41 and math.abs(rsi - rsi[shortLookBack]) > 1 and hasNoSignalBias and rsiSlope > 1.5 and close > open) strategy.entry("5C1", strategy.long, qty=1.0) strategy.exit("TPS", "5C1", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss) // 171.70 Profit 50.22% 5m if ( getVolBias(longLookBack) == true and rsi > 45 and rsi < 55 and macdSlope > 0 and signalSlope > 0) strategy.entry("5C2", strategy.long, qty=1.0) strategy.exit("TPS", "5C2", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss) // 309.50 Profit 30.8% 5m 2 tp .7 sl 289 trades if ( macd > macdBiasValue and macdSlope > 0) strategy.entry("5P1", strategy.short, qty=1.0) strategy.exit("TPS", "5P1", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss)