ガウスチャンネルのトレンドフォロー戦略 (Gaussian Channel Trend Following Strategy) は,ガウスチャンネルの指標に基づいたトレンドフォロー戦略である.この戦略は,市場における主要なトレンドを把握し,上向きのトレンド中に買い出し,保持し,下向きのトレンド中にポジションを閉じることを目的としている.これは,ガウスチャンネルの指標を使用して,価格とチャネルの上下帯の関係を分析してトレンドの方向性と強さを特定する.この戦略の主な目標は,持続的なトレンドの間に利益を最大化し,レンジ・バインド・トレード市場での取引頻度を最小化することである.
ガウスチャネルトレンドフォロー戦略の核心は,エラーズによって提案されたガウスチャネル指標である.これはトレンド活動を分析するために,ガウスチャネルフィルタリング技術とトゥールレンジを組み合わせている.指標は,まずサンプリング期間とポール数に基づいてベータとアルファ値を計算し,次にスムーズカーブ (ミッドライン) を取得するためにデータにフィルターを適用する.次に,戦略は,スムーズなトゥールレンジを倍数で倍数で上下チャネルを生成する.価格が上下チャネルを超えると,購入/売却信号を生成する.さらに,戦略は,遅延を減らす機能と迅速な応答モードを提供しています.
ガウスチャンネルのトレンドフォロー戦略 (Gaussian Channel Trend Following Strategy) は,ガウスフィルタリング技術に基づいたトレンドフォロー戦略で,長期にわたる安定したリターンのための主要市場トレンドを把握することを目的としている.この戦略は,ギャウスチャンネルの指標を使用してトレンド方向と強さを特定し,遅れを軽減し迅速な応答を提供するための機能を提供している.この戦略の利点は,強いトレンドフォロー能力と低取引頻度にある.しかし,パラメータ最適化,トレンド逆転,レンジバインド市場などのリスクにも直面している.将来の最適化には,他の技術指標,ダイナミックパラメータ最適化,リスク制御モジュールを追加し,マルチタイムフレーム分析を含む.
/*backtest start: 2023-03-23 00:00:00 end: 2024-03-28 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title="Gaussian Channel Strategy v2.0", overlay=true, calc_on_every_tick=false, initial_capital=1000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1, slippage=3) //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Gaussian Channel Indicaor - courtesy of @DonovanWall //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Date condition inputs startDate = input(timestamp("1 January 2018 00:00 +0000"), "Date Start", group="Main Algo Settings") endDate = input(timestamp("1 January 2060 00:00 +0000"), "Date Start", group="Main Algo Settings") timeCondition = true // This study is an experiment utilizing the Ehlers Gaussian Filter technique combined with lag reduction techniques and true range to analyze trend activity. // Gaussian filters, as Ehlers explains it, are simply exponential moving averages applied multiple times. // First, beta and alpha are calculated based on the sampling period and number of poles specified. The maximum number of poles available in this script is 9. // Next, the data being analyzed is given a truncation option for reduced lag, which can be enabled with "Reduced Lag Mode". // Then the alpha and source values are used to calculate the filter and filtered true range of the dataset. // Filtered true range with a specified multiplier is then added to and subtracted from the filter, generating a channel. // Lastly, a one pole filter with a N pole alpha is averaged with the filter to generate a faster filter, which can be enabled with "Fast Response Mode". // Custom bar colors are included. // Note: Both the sampling period and number of poles directly affect how much lag the indicator has, and how smooth the output is. // Larger inputs will result in smoother outputs with increased lag, and smaller inputs will have noisier outputs with reduced lag. // For the best results, I recommend not setting the sampling period any lower than the number of poles + 1. Going lower truncates the equation. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Updates: // Huge shoutout to @e2e4mfck for taking the time to improve the calculation method! // -> migrated to v4 // -> pi is now calculated using trig identities rather than being explicitly defined. // -> The filter calculations are now organized into functions rather than being individually defined. // -> Revamped color scheme. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Functions - courtesy of @e2e4mfck //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Filter function f_filt9x (_a, _s, _i) => int _m2 = 0, int _m3 = 0, int _m4 = 0, int _m5 = 0, int _m6 = 0, int _m7 = 0, int _m8 = 0, int _m9 = 0, float _f = .0, _x = (1 - _a) // Weights. // Initial weight _m1 is a pole number and equal to _i _m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0 _m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0 _m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0 _m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0 _m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0 _m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0 _m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0 _m9 := _i == 9 ? 1 : 0 // filter _f := math.pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * math.pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * math.pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * math.pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * math.pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * math.pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * math.pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * math.pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * math.pow(_x, 9) * nz(_f[9]) : 0) // 9 var declaration fun f_pole (_a, _s, _i) => _f1 = f_filt9x(_a, _s, 1), _f2 = (_i >= 2 ? f_filt9x(_a, _s, 2) : 0), _f3 = (_i >= 3 ? f_filt9x(_a, _s, 3) : 0) _f4 = (_i >= 4 ? f_filt9x(_a, _s, 4) : 0), _f5 = (_i >= 5 ? f_filt9x(_a, _s, 5) : 0), _f6 = (_i >= 6 ? f_filt9x(_a, _s, 6) : 0) _f7 = (_i >= 2 ? f_filt9x(_a, _s, 7) : 0), _f8 = (_i >= 8 ? f_filt9x(_a, _s, 8) : 0), _f9 = (_i == 9 ? f_filt9x(_a, _s, 9) : 0) _fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na [_fn, _f1] //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Inputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Source src = input(defval=hlc3, title="Source") // Poles int N = input.int(defval=4, title="Poles", minval=1, maxval=9) // Period int per = input.int(defval=144, title="Sampling Period", minval=2) // True Range Multiplier float mult = input.float(defval=1.414, title="Filtered True Range Multiplier", minval=0) // Lag Reduction bool modeLag = input.bool(defval=false, title="Reduced Lag Mode") bool modeFast = input.bool(defval=false, title="Fast Response Mode") //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Definitions //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Beta and Alpha Components beta = (1 - math.cos(4*math.asin(1)/per)) / (math.pow(1.414, 2/N) - 1) alpha = - beta + math.sqrt(math.pow(beta, 2) + 2*beta) // Lag lag = (per - 1)/(2*N) // Data srcdata = modeLag ? src + (src - src[lag]) : src trdata = modeLag ? ta.tr(true) + (ta.tr(true) - ta.tr(true)[lag]) : ta.tr(true) // Filtered Values [filtn, filt1] = f_pole(alpha, srcdata, N) [filtntr, filt1tr] = f_pole(alpha, trdata, N) // Lag Reduction filt = modeFast ? (filtn + filt1)/2 : filtn filttr = modeFast ? (filtntr + filt1tr)/2 : filtntr // Bands hband = filt + filttr*mult lband = filt - filttr*mult // Colors color1 = #0aff68 color2 = #00752d color3 = #ff0a5a color4 = #990032 fcolor = filt > filt[1] ? #0aff68 : filt < filt[1] ? #ff0a5a : #cccccc barcolor = (src > src[1]) and (src > filt) and (src < hband) ? #0aff68 : (src > src[1]) and (src >= hband) ? #0aff1b : (src <= src[1]) and (src > filt) ? #00752d : (src < src[1]) and (src < filt) and (src > lband) ? #ff0a5a : (src < src[1]) and (src <= lband) ? #ff0a11 : (src >= src[1]) and (src < filt) ? #990032 : #cccccc //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Outputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Filter Plot filtplot = plot(filt, title="Filter", color=fcolor, linewidth=3) // Band Plots hbandplot = plot(hband, title="Filtered True Range High Band", color=fcolor) lbandplot = plot(lband, title="Filtered True Range Low Band", color=fcolor) // Channel Fill fill(hbandplot, lbandplot, title="Channel Fill", color=color.new(fcolor, 80)) // Bar Color barcolor(barcolor) longCondition = ta.crossover(close, hband) and timeCondition closeAllCondition = ta.crossunder(close, hband) and timeCondition if longCondition strategy.entry("long", strategy.long) if closeAllCondition strategy.close("long")