가우스 채널 트렌드 다음 전략 (Gaussian Channel Trend Following Strategy) 은 가우스 채널 지표에 기반을 둔 트렌드 다음 전략이다. 이 전략은 시장의 주요 트렌드를 포착하고, 상승 추세 중 구매 및 보유 포지션과 하락 추세 중 포지션을 닫는 것을 목표로 한다. 이 전략은 가우스 채널 지표를 사용하여 가격과 채널의 상부 및 하부 밴드 사이의 관계를 분석하여 트렌드의 방향과 강도를 파악한다. 전략의 주요 목표는 지속적인 트렌드 중 이익을 극대화하는 동시에 범위 제한 거래 시장에서 주파수를 최소화하는 것이다.
가우스 채널 트렌드 추적 전략의 핵심은 에일러스가 제안한 가우스 채널 지표이다. 트렌드 활동을 분석하기 위해 가우스 필터링 기술과 트루 레인지를 결합한다. 지표는 먼저 샘플링 기간과 극의 수에 따라 베타와 알파 값을 계산하고, 그 다음
가우스 채널 트렌드 추적 전략 (Gaussian Channel Trend Following Strategy) 은 가우스 채널 필터링 기법에 기반한 트렌드 추적 전략으로, 장기적인 안정적인 수익을 위해 주요 시장 트렌드를 파악하는 것을 목표로 한다. 이 전략은 트렌드 방향과 강도를 파악하기 위해 가우스 채널 지표를 사용하면서 지연을 줄이고 빠른 반응을 제공하는 기능을 제공한다. 이 전략의 장점은 강한 트렌드 추적 능력과 낮은 거래 빈도에 있다. 그러나, 또한 매개 변수 최적화, 트렌드 역전, 범위에 제한된 시장과 같은 위험에 직면한다. 미래 최적화는 다른 기술적 지표, 동적 매개 변수 최적화, 위험 제어 모듈 추가, 그리고 전략의 안정성과 수익성을 더욱 향상시키기 위해 다중 시간 프레임 분석을 포함할 수 있다.
/*backtest start: 2023-03-23 00:00:00 end: 2024-03-28 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title="Gaussian Channel Strategy v2.0", overlay=true, calc_on_every_tick=false, initial_capital=1000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1, slippage=3) //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Gaussian Channel Indicaor - courtesy of @DonovanWall //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Date condition inputs startDate = input(timestamp("1 January 2018 00:00 +0000"), "Date Start", group="Main Algo Settings") endDate = input(timestamp("1 January 2060 00:00 +0000"), "Date Start", group="Main Algo Settings") timeCondition = true // This study is an experiment utilizing the Ehlers Gaussian Filter technique combined with lag reduction techniques and true range to analyze trend activity. // Gaussian filters, as Ehlers explains it, are simply exponential moving averages applied multiple times. // First, beta and alpha are calculated based on the sampling period and number of poles specified. The maximum number of poles available in this script is 9. // Next, the data being analyzed is given a truncation option for reduced lag, which can be enabled with "Reduced Lag Mode". // Then the alpha and source values are used to calculate the filter and filtered true range of the dataset. // Filtered true range with a specified multiplier is then added to and subtracted from the filter, generating a channel. // Lastly, a one pole filter with a N pole alpha is averaged with the filter to generate a faster filter, which can be enabled with "Fast Response Mode". // Custom bar colors are included. // Note: Both the sampling period and number of poles directly affect how much lag the indicator has, and how smooth the output is. // Larger inputs will result in smoother outputs with increased lag, and smaller inputs will have noisier outputs with reduced lag. // For the best results, I recommend not setting the sampling period any lower than the number of poles + 1. Going lower truncates the equation. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Updates: // Huge shoutout to @e2e4mfck for taking the time to improve the calculation method! // -> migrated to v4 // -> pi is now calculated using trig identities rather than being explicitly defined. // -> The filter calculations are now organized into functions rather than being individually defined. // -> Revamped color scheme. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Functions - courtesy of @e2e4mfck //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Filter function f_filt9x (_a, _s, _i) => int _m2 = 0, int _m3 = 0, int _m4 = 0, int _m5 = 0, int _m6 = 0, int _m7 = 0, int _m8 = 0, int _m9 = 0, float _f = .0, _x = (1 - _a) // Weights. // Initial weight _m1 is a pole number and equal to _i _m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0 _m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0 _m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0 _m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0 _m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0 _m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0 _m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0 _m9 := _i == 9 ? 1 : 0 // filter _f := math.pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * math.pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * math.pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * math.pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * math.pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * math.pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * math.pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * math.pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * math.pow(_x, 9) * nz(_f[9]) : 0) // 9 var declaration fun f_pole (_a, _s, _i) => _f1 = f_filt9x(_a, _s, 1), _f2 = (_i >= 2 ? f_filt9x(_a, _s, 2) : 0), _f3 = (_i >= 3 ? f_filt9x(_a, _s, 3) : 0) _f4 = (_i >= 4 ? f_filt9x(_a, _s, 4) : 0), _f5 = (_i >= 5 ? f_filt9x(_a, _s, 5) : 0), _f6 = (_i >= 6 ? f_filt9x(_a, _s, 6) : 0) _f7 = (_i >= 2 ? f_filt9x(_a, _s, 7) : 0), _f8 = (_i >= 8 ? f_filt9x(_a, _s, 8) : 0), _f9 = (_i == 9 ? f_filt9x(_a, _s, 9) : 0) _fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na [_fn, _f1] //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Inputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Source src = input(defval=hlc3, title="Source") // Poles int N = input.int(defval=4, title="Poles", minval=1, maxval=9) // Period int per = input.int(defval=144, title="Sampling Period", minval=2) // True Range Multiplier float mult = input.float(defval=1.414, title="Filtered True Range Multiplier", minval=0) // Lag Reduction bool modeLag = input.bool(defval=false, title="Reduced Lag Mode") bool modeFast = input.bool(defval=false, title="Fast Response Mode") //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Definitions //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Beta and Alpha Components beta = (1 - math.cos(4*math.asin(1)/per)) / (math.pow(1.414, 2/N) - 1) alpha = - beta + math.sqrt(math.pow(beta, 2) + 2*beta) // Lag lag = (per - 1)/(2*N) // Data srcdata = modeLag ? src + (src - src[lag]) : src trdata = modeLag ? ta.tr(true) + (ta.tr(true) - ta.tr(true)[lag]) : ta.tr(true) // Filtered Values [filtn, filt1] = f_pole(alpha, srcdata, N) [filtntr, filt1tr] = f_pole(alpha, trdata, N) // Lag Reduction filt = modeFast ? (filtn + filt1)/2 : filtn filttr = modeFast ? (filtntr + filt1tr)/2 : filtntr // Bands hband = filt + filttr*mult lband = filt - filttr*mult // Colors color1 = #0aff68 color2 = #00752d color3 = #ff0a5a color4 = #990032 fcolor = filt > filt[1] ? #0aff68 : filt < filt[1] ? #ff0a5a : #cccccc barcolor = (src > src[1]) and (src > filt) and (src < hband) ? #0aff68 : (src > src[1]) and (src >= hband) ? #0aff1b : (src <= src[1]) and (src > filt) ? #00752d : (src < src[1]) and (src < filt) and (src > lband) ? #ff0a5a : (src < src[1]) and (src <= lband) ? #ff0a11 : (src >= src[1]) and (src < filt) ? #990032 : #cccccc //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Outputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Filter Plot filtplot = plot(filt, title="Filter", color=fcolor, linewidth=3) // Band Plots hbandplot = plot(hband, title="Filtered True Range High Band", color=fcolor) lbandplot = plot(lband, title="Filtered True Range Low Band", color=fcolor) // Channel Fill fill(hbandplot, lbandplot, title="Channel Fill", color=color.new(fcolor, 80)) // Bar Color barcolor(barcolor) longCondition = ta.crossover(close, hband) and timeCondition closeAllCondition = ta.crossunder(close, hband) and timeCondition if longCondition strategy.entry("long", strategy.long) if closeAllCondition strategy.close("long")