A estratégia de acompanhamento de tendência do canal de Gauss é uma estratégia de negociação baseada no indicador do canal de Gauss. A estratégia visa capturar as principais tendências do mercado, comprando e mantendo posições durante tendências de alta e fechando posições durante tendências de baixa.
O núcleo da estratégia de seguimento de tendências do canal de Gauss é o indicador de canal de Gauss, que foi proposto por Ehlers. Ele combina técnicas de filtragem de Gauss com True Range para analisar a atividade da tendência. O indicador primeiro calcula os valores beta e alfa com base no período de amostragem e no número de pólos, depois aplica um filtro aos dados para obter uma curva suavizada (linha média). Em seguida, a estratégia multiplica a True Range suavizada por um multiplicador para gerar os canais superior e inferior. Quando o preço atravessa acima / abaixo do canal superior / inferior, ele gera um sinal de compra / venda. Além disso, a estratégia oferece recursos para reduzir o atraso do indicador e um modo de resposta rápido.
A estratégia de seguimento de tendências do canal de Gauss é uma estratégia de negociação baseada em técnicas de filtragem de Gauss, que visa capturar as principais tendências do mercado para retornos estáveis de longo prazo. A estratégia usa o indicador do canal de Gauss para identificar a direção e a força da tendência, oferecendo recursos para reduzir o atraso e fornecer uma resposta rápida. As vantagens da estratégia estão em sua forte capacidade de seguir tendências e baixa frequência de negociação. No entanto, também enfrenta riscos como otimização de parâmetros, inversões de tendência e mercados de faixa.
/*backtest start: 2023-03-23 00:00:00 end: 2024-03-28 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title="Gaussian Channel Strategy v2.0", overlay=true, calc_on_every_tick=false, initial_capital=1000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1, slippage=3) //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Gaussian Channel Indicaor - courtesy of @DonovanWall //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Date condition inputs startDate = input(timestamp("1 January 2018 00:00 +0000"), "Date Start", group="Main Algo Settings") endDate = input(timestamp("1 January 2060 00:00 +0000"), "Date Start", group="Main Algo Settings") timeCondition = true // This study is an experiment utilizing the Ehlers Gaussian Filter technique combined with lag reduction techniques and true range to analyze trend activity. // Gaussian filters, as Ehlers explains it, are simply exponential moving averages applied multiple times. // First, beta and alpha are calculated based on the sampling period and number of poles specified. The maximum number of poles available in this script is 9. // Next, the data being analyzed is given a truncation option for reduced lag, which can be enabled with "Reduced Lag Mode". // Then the alpha and source values are used to calculate the filter and filtered true range of the dataset. // Filtered true range with a specified multiplier is then added to and subtracted from the filter, generating a channel. // Lastly, a one pole filter with a N pole alpha is averaged with the filter to generate a faster filter, which can be enabled with "Fast Response Mode". // Custom bar colors are included. // Note: Both the sampling period and number of poles directly affect how much lag the indicator has, and how smooth the output is. // Larger inputs will result in smoother outputs with increased lag, and smaller inputs will have noisier outputs with reduced lag. // For the best results, I recommend not setting the sampling period any lower than the number of poles + 1. Going lower truncates the equation. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Updates: // Huge shoutout to @e2e4mfck for taking the time to improve the calculation method! // -> migrated to v4 // -> pi is now calculated using trig identities rather than being explicitly defined. // -> The filter calculations are now organized into functions rather than being individually defined. // -> Revamped color scheme. //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Functions - courtesy of @e2e4mfck //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Filter function f_filt9x (_a, _s, _i) => int _m2 = 0, int _m3 = 0, int _m4 = 0, int _m5 = 0, int _m6 = 0, int _m7 = 0, int _m8 = 0, int _m9 = 0, float _f = .0, _x = (1 - _a) // Weights. // Initial weight _m1 is a pole number and equal to _i _m2 := _i == 9 ? 36 : _i == 8 ? 28 : _i == 7 ? 21 : _i == 6 ? 15 : _i == 5 ? 10 : _i == 4 ? 6 : _i == 3 ? 3 : _i == 2 ? 1 : 0 _m3 := _i == 9 ? 84 : _i == 8 ? 56 : _i == 7 ? 35 : _i == 6 ? 20 : _i == 5 ? 10 : _i == 4 ? 4 : _i == 3 ? 1 : 0 _m4 := _i == 9 ? 126 : _i == 8 ? 70 : _i == 7 ? 35 : _i == 6 ? 15 : _i == 5 ? 5 : _i == 4 ? 1 : 0 _m5 := _i == 9 ? 126 : _i == 8 ? 56 : _i == 7 ? 21 : _i == 6 ? 6 : _i == 5 ? 1 : 0 _m6 := _i == 9 ? 84 : _i == 8 ? 28 : _i == 7 ? 7 : _i == 6 ? 1 : 0 _m7 := _i == 9 ? 36 : _i == 8 ? 8 : _i == 7 ? 1 : 0 _m8 := _i == 9 ? 9 : _i == 8 ? 1 : 0 _m9 := _i == 9 ? 1 : 0 // filter _f := math.pow(_a, _i) * nz(_s) + _i * _x * nz(_f[1]) - (_i >= 2 ? _m2 * math.pow(_x, 2) * nz(_f[2]) : 0) + (_i >= 3 ? _m3 * math.pow(_x, 3) * nz(_f[3]) : 0) - (_i >= 4 ? _m4 * math.pow(_x, 4) * nz(_f[4]) : 0) + (_i >= 5 ? _m5 * math.pow(_x, 5) * nz(_f[5]) : 0) - (_i >= 6 ? _m6 * math.pow(_x, 6) * nz(_f[6]) : 0) + (_i >= 7 ? _m7 * math.pow(_x, 7) * nz(_f[7]) : 0) - (_i >= 8 ? _m8 * math.pow(_x, 8) * nz(_f[8]) : 0) + (_i == 9 ? _m9 * math.pow(_x, 9) * nz(_f[9]) : 0) // 9 var declaration fun f_pole (_a, _s, _i) => _f1 = f_filt9x(_a, _s, 1), _f2 = (_i >= 2 ? f_filt9x(_a, _s, 2) : 0), _f3 = (_i >= 3 ? f_filt9x(_a, _s, 3) : 0) _f4 = (_i >= 4 ? f_filt9x(_a, _s, 4) : 0), _f5 = (_i >= 5 ? f_filt9x(_a, _s, 5) : 0), _f6 = (_i >= 6 ? f_filt9x(_a, _s, 6) : 0) _f7 = (_i >= 2 ? f_filt9x(_a, _s, 7) : 0), _f8 = (_i >= 8 ? f_filt9x(_a, _s, 8) : 0), _f9 = (_i == 9 ? f_filt9x(_a, _s, 9) : 0) _fn = _i == 1 ? _f1 : _i == 2 ? _f2 : _i == 3 ? _f3 : _i == 4 ? _f4 : _i == 5 ? _f5 : _i == 6 ? _f6 : _i == 7 ? _f7 : _i == 8 ? _f8 : _i == 9 ? _f9 : na [_fn, _f1] //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Inputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Source src = input(defval=hlc3, title="Source") // Poles int N = input.int(defval=4, title="Poles", minval=1, maxval=9) // Period int per = input.int(defval=144, title="Sampling Period", minval=2) // True Range Multiplier float mult = input.float(defval=1.414, title="Filtered True Range Multiplier", minval=0) // Lag Reduction bool modeLag = input.bool(defval=false, title="Reduced Lag Mode") bool modeFast = input.bool(defval=false, title="Fast Response Mode") //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Definitions //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Beta and Alpha Components beta = (1 - math.cos(4*math.asin(1)/per)) / (math.pow(1.414, 2/N) - 1) alpha = - beta + math.sqrt(math.pow(beta, 2) + 2*beta) // Lag lag = (per - 1)/(2*N) // Data srcdata = modeLag ? src + (src - src[lag]) : src trdata = modeLag ? ta.tr(true) + (ta.tr(true) - ta.tr(true)[lag]) : ta.tr(true) // Filtered Values [filtn, filt1] = f_pole(alpha, srcdata, N) [filtntr, filt1tr] = f_pole(alpha, trdata, N) // Lag Reduction filt = modeFast ? (filtn + filt1)/2 : filtn filttr = modeFast ? (filtntr + filt1tr)/2 : filtntr // Bands hband = filt + filttr*mult lband = filt - filttr*mult // Colors color1 = #0aff68 color2 = #00752d color3 = #ff0a5a color4 = #990032 fcolor = filt > filt[1] ? #0aff68 : filt < filt[1] ? #ff0a5a : #cccccc barcolor = (src > src[1]) and (src > filt) and (src < hband) ? #0aff68 : (src > src[1]) and (src >= hband) ? #0aff1b : (src <= src[1]) and (src > filt) ? #00752d : (src < src[1]) and (src < filt) and (src > lband) ? #ff0a5a : (src < src[1]) and (src <= lband) ? #ff0a11 : (src >= src[1]) and (src < filt) ? #990032 : #cccccc //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Outputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- // Filter Plot filtplot = plot(filt, title="Filter", color=fcolor, linewidth=3) // Band Plots hbandplot = plot(hband, title="Filtered True Range High Band", color=fcolor) lbandplot = plot(lband, title="Filtered True Range Low Band", color=fcolor) // Channel Fill fill(hbandplot, lbandplot, title="Channel Fill", color=color.new(fcolor, 80)) // Bar Color barcolor(barcolor) longCondition = ta.crossover(close, hband) and timeCondition closeAllCondition = ta.crossunder(close, hband) and timeCondition if longCondition strategy.entry("long", strategy.long) if closeAllCondition strategy.close("long")