This strategy is an intelligent trading system that combines MACD (Moving Average Convergence Divergence) and Linear Regression Slope (LRS). It optimizes MACD calculation through multiple moving average methods and incorporates linear regression analysis to enhance signal reliability. The strategy allows traders to flexibly choose between single or dual indicator combinations for generating trading signals and includes stop-loss and take-profit mechanisms for risk control.
The strategy’s core lies in capturing market trends through optimized MACD and linear regression indicators. The MACD component utilizes a combination of SMA, EMA, WMA, and TEMA calculations to enhance price trend sensitivity. The linear regression component evaluates trend direction and strength through regression line slope and position analysis. Buy signals can be generated based on MACD crossovers, linear regression uptrends, or a combination of both. Similarly, sell signals can be flexibly configured. The strategy includes percentage-based stop-loss and take-profit settings for effective risk-reward management.
This strategy creates a flexible and reliable trading system by combining improved versions of classic indicators with statistical methods. Its modular design allows traders to adjust strategy parameters and signal confirmation mechanisms according to different market environments. Through continuous optimization and improvement, the strategy shows promise for maintaining stable performance across various market conditions.
/*backtest start: 2024-11-10 00:00:00 end: 2024-12-09 08:00:00 period: 1h basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=6 strategy('SIMPLIFIED MACD & LRS Backtest by NHBProd', overlay=false) // Function to calculate TEMA (Triple Exponential Moving Average) tema(src, length) => ema1 = ta.ema(src, length) ema2 = ta.ema(ema1, length) ema3 = ta.ema(ema2, length) 3 * (ema1 - ema2) + ema3 // MACD Calculation Function macdfx(src, fast_length, slow_length, signal_length, method) => fast_ma = method == 'SMA' ? ta.sma(src, fast_length) : method == 'EMA' ? ta.ema(src, fast_length) : method == 'WMA' ? ta.wma(src, fast_length) : tema(src, fast_length) slow_ma = method == 'SMA' ? ta.sma(src, slow_length) : method == 'EMA' ? ta.ema(src, slow_length) : method == 'WMA' ? ta.wma(src, slow_length) : tema(src, slow_length) macd = fast_ma - slow_ma signal = method == 'SMA' ? ta.sma(macd, signal_length) : method == 'EMA' ? ta.ema(macd, signal_length) : method == 'WMA' ? ta.wma(macd, signal_length) : tema(macd, signal_length) hist = macd - signal [macd, signal, hist] // MACD Inputs useMACD = input(true, title="Use MACD for Signals") src = input(close, title="MACD Source") fastp = input(12, title="MACD Fast Length") slowp = input(26, title="MACD Slow Length") signalp = input(9, title="MACD Signal Length") macdMethod = input.string('EMA', title='MACD Method', options=['EMA', 'SMA', 'WMA', 'TEMA']) // MACD Calculation [macd, signal, hist] = macdfx(src, fastp, slowp, signalp, macdMethod) // Linear Regression Inputs useLR = input(true, title="Use Linear Regression for Signals") lrLength = input(24, title="Linear Regression Length") lrSource = input(close, title="Linear Regression Source") lrSignalSelector = input.string('Rising Linear', title='Signal Selector', options=['Price Above Linear', 'Rising Linear', 'Both']) // Linear Regression Calculation linReg = ta.linreg(lrSource, lrLength, 0) linRegPrev = ta.linreg(lrSource, lrLength, 1) slope = linReg - linRegPrev // Linear Regression Buy Signal lrBuySignal = lrSignalSelector == 'Price Above Linear' ? (close > linReg) : lrSignalSelector == 'Rising Linear' ? (slope > 0 and slope > slope[1]) : lrSignalSelector == 'Both' ? (close > linReg and slope > 0) : false // MACD Crossover Signals macdCrossover = ta.crossover(macd, signal) // Buy Signals based on user choices macdSignal = useMACD and macdCrossover lrSignal = useLR and lrBuySignal // Buy condition: Use AND condition if both are selected, OR condition if only one is selected buySignal = (useMACD and useLR) ? (macdSignal and lrSignal) : (macdSignal or lrSignal) // Plot MACD hline(0, title="Zero Line", color=color.gray) plot(macd, color=color.blue, title="MACD Line", linewidth=2) plot(signal, color=color.orange, title="Signal Line", linewidth=2) plot(hist, color=hist >= 0 ? color.green : color.red, style=plot.style_columns, title="MACD Histogram") // Plot Linear Regression Line and Slope plot(slope, color=slope > 0 ? color.purple : color.red, title="Slope", linewidth=2) plot(linReg,title="lingreg") // Signal Plot for Visualization plotshape(buySignal, style=shape.labelup, location=location.bottom, color=color.new(color.green, 0), title="Buy Signal", text="Buy") // Sell Signals for Exiting Long Positions macdCrossunder = ta.crossunder(macd, signal) // MACD Crossunder for Sell Signal lrSellSignal = lrSignalSelector == 'Price Above Linear' ? (close < linReg) : lrSignalSelector == 'Rising Linear' ? (slope < 0 and slope < slope[1]) : lrSignalSelector == 'Both' ? (close < linReg and slope < 0) : false // User Input for Exit Signals: Select indicators to use for exiting trades useMACDSell = input(true, title="Use MACD for Exit Signals") useLRSell = input(true, title="Use Linear Regression for Exit Signals") // Sell condition: Use AND condition if both are selected to trigger a sell at the same time, OR condition if only one is selected sellSignal = (useMACDSell and useLRSell) ? (macdCrossunder and lrSellSignal) : (useMACDSell ? macdCrossunder : false) or (useLRSell ? lrSellSignal : false) // Plot Sell Signals for Visualization (for exits, not short trades) plotshape(sellSignal, style=shape.labeldown, location=location.top, color=color.new(color.red, 0), title="Sell Signal", text="Sell") // Alerts alertcondition(buySignal, title="Buy Signal", message="Buy signal detected!") alertcondition(sellSignal, title="Sell Signal", message="Sell signal detected!") // Take Profit and Stop Loss Inputs takeProfit = input.float(10.0, title="Take Profit (%)") // Take Profit in percentage stopLoss = input.float(0.10, title="Stop Loss (%)") // Stop Loss in percentage // Backtest Date Range startDate = input(timestamp("2024-01-01 00:00"), title="Start Date") endDate = input(timestamp("2025-12-12 00:00"), title="End Date") inBacktestPeriod = true // Entry Rules (Only Long Entries) if (buySignal and inBacktestPeriod) strategy.entry("Buy", strategy.long) // Exit Rules (Only for Long Positions) strategy.exit("Exit Buy", from_entry="Buy", limit=close * (1 + takeProfit / 100), stop=close * (1 - stopLoss / 100)) // Exit Long Position Based on Sell Signals if (sellSignal and inBacktestPeriod) strategy.close("Buy", comment="Exit Signal")