Esta estrategia es un sistema de negociación inteligente que combina MACD (Moving Average Convergence Divergence) y Slope de Regresión Lineal (LRS). Optimiza el cálculo de MACD a través de múltiples métodos de promedio móvil e incorpora análisis de regresión lineal para mejorar la confiabilidad de la señal. La estrategia permite a los operadores elegir flexiblemente entre combinaciones de indicadores únicos o duales para generar señales de negociación e incluye mecanismos de stop-loss y take-profit para el control de riesgos.
El núcleo de la estrategia consiste en capturar las tendencias del mercado a través de indicadores optimizados de MACD y regresión lineal. El componente MACD utiliza una combinación de cálculos de SMA, EMA, WMA y TEMA para mejorar la sensibilidad de la tendencia de precios. El componente de regresión lineal evalúa la dirección y la fuerza de la tendencia a través de la pendiente de la línea de regresión y el análisis de posición. Las señales de compra se pueden generar basadas en cruces MACD, tendencias alcistas de regresión lineal o una combinación de ambos. Del mismo modo, las señales de venta se pueden configurar de manera flexible. La estrategia incluye configuraciones de stop-loss y take-profit basadas en porcentajes para una gestión efectiva del riesgo-recompensación.
Esta estrategia crea un sistema de negociación flexible y confiable mediante la combinación de versiones mejoradas de indicadores clásicos con métodos estadísticos. Su diseño modular permite a los operadores ajustar los parámetros de la estrategia y los mecanismos de confirmación de señales de acuerdo con diferentes entornos de mercado.
/*backtest start: 2024-11-10 00:00:00 end: 2024-12-09 08:00:00 period: 1h basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=6 strategy('SIMPLIFIED MACD & LRS Backtest by NHBProd', overlay=false) // Function to calculate TEMA (Triple Exponential Moving Average) tema(src, length) => ema1 = ta.ema(src, length) ema2 = ta.ema(ema1, length) ema3 = ta.ema(ema2, length) 3 * (ema1 - ema2) + ema3 // MACD Calculation Function macdfx(src, fast_length, slow_length, signal_length, method) => fast_ma = method == 'SMA' ? ta.sma(src, fast_length) : method == 'EMA' ? ta.ema(src, fast_length) : method == 'WMA' ? ta.wma(src, fast_length) : tema(src, fast_length) slow_ma = method == 'SMA' ? ta.sma(src, slow_length) : method == 'EMA' ? ta.ema(src, slow_length) : method == 'WMA' ? ta.wma(src, slow_length) : tema(src, slow_length) macd = fast_ma - slow_ma signal = method == 'SMA' ? ta.sma(macd, signal_length) : method == 'EMA' ? ta.ema(macd, signal_length) : method == 'WMA' ? ta.wma(macd, signal_length) : tema(macd, signal_length) hist = macd - signal [macd, signal, hist] // MACD Inputs useMACD = input(true, title="Use MACD for Signals") src = input(close, title="MACD Source") fastp = input(12, title="MACD Fast Length") slowp = input(26, title="MACD Slow Length") signalp = input(9, title="MACD Signal Length") macdMethod = input.string('EMA', title='MACD Method', options=['EMA', 'SMA', 'WMA', 'TEMA']) // MACD Calculation [macd, signal, hist] = macdfx(src, fastp, slowp, signalp, macdMethod) // Linear Regression Inputs useLR = input(true, title="Use Linear Regression for Signals") lrLength = input(24, title="Linear Regression Length") lrSource = input(close, title="Linear Regression Source") lrSignalSelector = input.string('Rising Linear', title='Signal Selector', options=['Price Above Linear', 'Rising Linear', 'Both']) // Linear Regression Calculation linReg = ta.linreg(lrSource, lrLength, 0) linRegPrev = ta.linreg(lrSource, lrLength, 1) slope = linReg - linRegPrev // Linear Regression Buy Signal lrBuySignal = lrSignalSelector == 'Price Above Linear' ? (close > linReg) : lrSignalSelector == 'Rising Linear' ? (slope > 0 and slope > slope[1]) : lrSignalSelector == 'Both' ? (close > linReg and slope > 0) : false // MACD Crossover Signals macdCrossover = ta.crossover(macd, signal) // Buy Signals based on user choices macdSignal = useMACD and macdCrossover lrSignal = useLR and lrBuySignal // Buy condition: Use AND condition if both are selected, OR condition if only one is selected buySignal = (useMACD and useLR) ? (macdSignal and lrSignal) : (macdSignal or lrSignal) // Plot MACD hline(0, title="Zero Line", color=color.gray) plot(macd, color=color.blue, title="MACD Line", linewidth=2) plot(signal, color=color.orange, title="Signal Line", linewidth=2) plot(hist, color=hist >= 0 ? color.green : color.red, style=plot.style_columns, title="MACD Histogram") // Plot Linear Regression Line and Slope plot(slope, color=slope > 0 ? color.purple : color.red, title="Slope", linewidth=2) plot(linReg,title="lingreg") // Signal Plot for Visualization plotshape(buySignal, style=shape.labelup, location=location.bottom, color=color.new(color.green, 0), title="Buy Signal", text="Buy") // Sell Signals for Exiting Long Positions macdCrossunder = ta.crossunder(macd, signal) // MACD Crossunder for Sell Signal lrSellSignal = lrSignalSelector == 'Price Above Linear' ? (close < linReg) : lrSignalSelector == 'Rising Linear' ? (slope < 0 and slope < slope[1]) : lrSignalSelector == 'Both' ? (close < linReg and slope < 0) : false // User Input for Exit Signals: Select indicators to use for exiting trades useMACDSell = input(true, title="Use MACD for Exit Signals") useLRSell = input(true, title="Use Linear Regression for Exit Signals") // Sell condition: Use AND condition if both are selected to trigger a sell at the same time, OR condition if only one is selected sellSignal = (useMACDSell and useLRSell) ? (macdCrossunder and lrSellSignal) : (useMACDSell ? macdCrossunder : false) or (useLRSell ? lrSellSignal : false) // Plot Sell Signals for Visualization (for exits, not short trades) plotshape(sellSignal, style=shape.labeldown, location=location.top, color=color.new(color.red, 0), title="Sell Signal", text="Sell") // Alerts alertcondition(buySignal, title="Buy Signal", message="Buy signal detected!") alertcondition(sellSignal, title="Sell Signal", message="Sell signal detected!") // Take Profit and Stop Loss Inputs takeProfit = input.float(10.0, title="Take Profit (%)") // Take Profit in percentage stopLoss = input.float(0.10, title="Stop Loss (%)") // Stop Loss in percentage // Backtest Date Range startDate = input(timestamp("2024-01-01 00:00"), title="Start Date") endDate = input(timestamp("2025-12-12 00:00"), title="End Date") inBacktestPeriod = true // Entry Rules (Only Long Entries) if (buySignal and inBacktestPeriod) strategy.entry("Buy", strategy.long) // Exit Rules (Only for Long Positions) strategy.exit("Exit Buy", from_entry="Buy", limit=close * (1 + takeProfit / 100), stop=close * (1 - stopLoss / 100)) // Exit Long Position Based on Sell Signals if (sellSignal and inBacktestPeriod) strategy.close("Buy", comment="Exit Signal")