Les émissions de dioxyde de carbone sont les émissions de dioxyde de carbone les plus élevées enregistrées.
Les bandes de Bollinger comme filtre de volatilité: La bande supérieure = MA + (K * StdDev) La bande inférieure = MA - (K * StdDev)
Conditions d'entrée: - Longue: les prix dépassent le niveau du VIDYA lent avec une tendance à la hausse du VIDYA rapide et le prix dépasse la bande supérieure de Bollinger - Courte: les prix dépassent le niveau du Vidya lent avec la tendance à la baisse du Vidya rapide et le prix est inférieur à la bande de Bollinger inférieure
Le mécanisme à plusieurs niveaux de prise de bénéfices comprend: 1. prise de bénéfices basée sur ATR 2. Profit basé sur le pourcentage 3. Multiplicateur pour les pourcentages de bénéfices de négociation à découvert
Cette stratégie crée un système complet de suivi des tendances en combinant l'adaptabilité dynamique de l'indicateur VIDYA avec le filtrage de la volatilité des bandes de Bollinger. Le mécanisme à plusieurs niveaux de prise de profit et le traitement différencié long/short offrent un fort potentiel de profit et un contrôle des risques. Cependant, les utilisateurs doivent surveiller les changements de l'environnement du marché, ajuster les paramètres en conséquence et établir des systèmes de gestion de l'argent robustes.
/*backtest start: 2019-12-23 08:00:00 end: 2024-12-10 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © PresentTrading // This strategy, "VIDYA ProTrend Multi-Tier Profit," is a trend-following system that utilizes fast and slow VIDYA indicators // to identify entry and exit points based on the direction and strength of the trend. // It incorporates Bollinger Bands as a volatility filter and features a multi-step take profit mechanism, // with adjustable ATR-based and percentage-based profit targets for both long and short positions. // The strategy allows for more aggressive take profit settings for short trades, making it adaptable to varying market conditions. //@version=5 strategy("VIDYA ProTrend Multi-Tier Profit", overlay=true, precision=3, commission_value= 0.1, commission_type=strategy.commission.percent, slippage= 1, currency=currency.USD, default_qty_type = strategy.percent_of_equity, default_qty_value = 10, initial_capital=10000) // User-defined inputs tradeDirection = input.string(title="Trading Direction", defval="Both", options=["Long", "Short", "Both"]) fastVidyaLength = input.int(10, title="Fast VIDYA Length", minval=1) slowVidyaLength = input.int(30, title="Slow VIDYA Length", minval=1) minSlopeThreshold = input.float(0.05, title="Minimum VIDYA Slope Threshold", step=0.01) // Bollinger Bands Inputs bbLength = input.int(20, title="Bollinger Bands Length", minval=1) bbMultiplier = input.float(1.0, title="Bollinger Bands Multiplier", step=0.1) // Multi-Step Take Profit Settings group_tp = "Multi-Step Take Profit" useMultiStepTP = input.bool(true, title="Enable Multi-Step Take Profit", group=group_tp) tp_direction = input.string(title="Take Profit Direction", defval="Both", options=["Long", "Short", "Both"], group=group_tp) atrLengthTP = input.int(14, title="ATR Length", group=group_tp) // ATR-based Take Profit Steps atrMultiplierTP1 = input.float(2.618, title="ATR Multiplier for TP 1", group=group_tp) atrMultiplierTP2 = input.float(5.0, title="ATR Multiplier for TP 2", group=group_tp) atrMultiplierTP3 = input.float(10.0, title="ATR Multiplier for TP 3", group=group_tp) // Short Position Multiplier for Take Profit Percentages shortTPPercentMultiplier = input.float(1.5, title="Short TP Percent Multiplier", group=group_tp) // Percentage-based Take Profit Steps (Long) tp_level_percent1 = input.float(title="Take Profit Level 1 (%)", defval=3.0, group=group_tp) tp_level_percent2 = input.float(title="Take Profit Level 2 (%)", defval=8.0, group=group_tp) tp_level_percent3 = input.float(title="Take Profit Level 3 (%)", defval=17.0, group=group_tp) // Percentage-based Take Profit Allocation (Long) tp_percent1 = input.float(title="Take Profit Percent 1 (%)", defval=12.0, group=group_tp) tp_percent2 = input.float(title="Take Profit Percent 2 (%)", defval=8.0, group=group_tp) tp_percent3 = input.float(title="Take Profit Percent 3 (%)", defval=10.0, group=group_tp) // ATR-based Take Profit Percent Allocation (Long) tp_percentATR1 = input.float(title="ATR TP Percent 1 (%)", defval=10.0, group=group_tp) tp_percentATR2 = input.float(title="ATR TP Percent 2 (%)", defval=10.0, group=group_tp) tp_percentATR3 = input.float(title="ATR TP Percent 3 (%)", defval=10.0, group=group_tp) // Short position percentage allocations using the multiplier tp_percent1_short = tp_percent1 * shortTPPercentMultiplier tp_percent2_short = tp_percent2 * shortTPPercentMultiplier tp_percent3_short = tp_percent3 * shortTPPercentMultiplier tp_percentATR1_short = tp_percentATR1 * shortTPPercentMultiplier tp_percentATR2_short = tp_percentATR2 * shortTPPercentMultiplier tp_percentATR3_short = tp_percentATR3 * shortTPPercentMultiplier // VIDYA Calculation Function calcVIDYA(src, length) => alpha = 2 / (length + 1) momm = ta.change(src) m1 = momm >= 0.0 ? momm : 0.0 m2 = momm < 0.0 ? -momm : 0.0 sm1 = math.sum(m1, length) sm2 = math.sum(m2, length) chandeMO = nz(100 * (sm1 - sm2) / (sm1 + sm2)) k = math.abs(chandeMO) / 100 var float vidya = na vidya := na(vidya[1]) ? src : (alpha * k * src + (1 - alpha * k) * vidya[1]) vidya // Calculate VIDYAs fastVIDYA = calcVIDYA(close, fastVidyaLength) slowVIDYA = calcVIDYA(close, slowVidyaLength) // Bollinger Bands Calculation [bbUpper, bbBasis, bbLower] = ta.bb(close, bbLength, bbMultiplier) // Manual Slope Calculation (price difference over time) calcSlope(current, previous, length) => (current - previous) / length // Slope of fast and slow VIDYA (comparing current value with value 'length' bars ago) fastSlope = calcSlope(fastVIDYA, fastVIDYA[fastVidyaLength], fastVidyaLength) slowSlope = calcSlope(slowVIDYA, slowVIDYA[slowVidyaLength], slowVidyaLength) // Conditions for long entry with Bollinger Bands filter longCondition = close > slowVIDYA and fastVIDYA > slowSlope and fastSlope > minSlopeThreshold and slowSlope > 1/2*minSlopeThreshold and close > bbUpper // Conditions for short entry with Bollinger Bands filter shortCondition = close < slowVIDYA and fastSlope < slowSlope and fastSlope < -minSlopeThreshold and slowSlope < -1/2*minSlopeThreshold and close < bbLower // Exit conditions (opposite crossovers or flat slopes) exitLongCondition = fastSlope < -minSlopeThreshold and slowSlope < -1/2*minSlopeThreshold or shortCondition exitShortCondition = fastSlope > minSlopeThreshold and slowSlope > 1/2*minSlopeThreshold or longCondition // Entry and Exit logic with trading direction if (longCondition) and (strategy.position_size == 0) and (tradeDirection == "Long" or tradeDirection == "Both") strategy.entry("Long", strategy.long) if (exitLongCondition) and strategy.position_size > 0 and (tradeDirection == "Long" or tradeDirection == "Both") strategy.close("Long") if (shortCondition) and (strategy.position_size == 0) and (tradeDirection == "Short" or tradeDirection == "Both") strategy.entry("Short", strategy.short) if (exitShortCondition) and strategy.position_size < 0 and (tradeDirection == "Short" or tradeDirection == "Both") strategy.close("Short") if useMultiStepTP if strategy.position_size > 0 and (tp_direction == "Long" or tp_direction == "Both") // ATR-based Take Profit (Long) tp_priceATR1_long = strategy.position_avg_price + atrMultiplierTP1 * ta.atr(atrLengthTP) tp_priceATR2_long = strategy.position_avg_price + atrMultiplierTP2 * ta.atr(atrLengthTP) tp_priceATR3_long = strategy.position_avg_price + atrMultiplierTP3 * ta.atr(atrLengthTP) // Percentage-based Take Profit (Long) tp_pricePercent1_long = strategy.position_avg_price * (1 + tp_level_percent1 / 100) tp_pricePercent2_long = strategy.position_avg_price * (1 + tp_level_percent2 / 100) tp_pricePercent3_long = strategy.position_avg_price * (1 + tp_level_percent3 / 100) // Execute ATR-based exits for Long strategy.exit("TP ATR 1 Long", from_entry="Long", qty_percent=tp_percentATR1, limit=tp_priceATR1_long) strategy.exit("TP ATR 2 Long", from_entry="Long", qty_percent=tp_percentATR2, limit=tp_priceATR2_long) strategy.exit("TP ATR 3 Long", from_entry="Long", qty_percent=tp_percentATR3, limit=tp_priceATR3_long) // Execute Percentage-based exits for Long strategy.exit("TP Percent 1 Long", from_entry="Long", qty_percent=tp_percent1, limit=tp_pricePercent1_long) strategy.exit("TP Percent 2 Long", from_entry="Long", qty_percent=tp_percent2, limit=tp_pricePercent2_long) strategy.exit("TP Percent 3 Long", from_entry="Long", qty_percent=tp_percent3, limit=tp_pricePercent3_long) if strategy.position_size < 0 and (tp_direction == "Short" or tp_direction == "Both") // ATR-based Take Profit (Short) - using the same ATR levels as long tp_priceATR1_short = strategy.position_avg_price - atrMultiplierTP1 * ta.atr(atrLengthTP) tp_priceATR2_short = strategy.position_avg_price - atrMultiplierTP2 * ta.atr(atrLengthTP) tp_priceATR3_short = strategy.position_avg_price - atrMultiplierTP3 * ta.atr(atrLengthTP) // Percentage-based Take Profit (Short) - using the same levels, but more aggressive percentages tp_pricePercent1_short = strategy.position_avg_price * (1 - tp_level_percent1 / 100) tp_pricePercent2_short = strategy.position_avg_price * (1 - tp_level_percent2 / 100) tp_pricePercent3_short = strategy.position_avg_price * (1 - tp_level_percent3 / 100) // Execute ATR-based exits for Short (using the percentage multiplier for short) strategy.exit("TP ATR 1 Short", from_entry="Short", qty_percent=tp_percentATR1_short, limit=tp_priceATR1_short) strategy.exit("TP ATR 2 Short", from_entry="Short", qty_percent=tp_percentATR2_short, limit=tp_priceATR2_short) strategy.exit("TP ATR 3 Short", from_entry="Short", qty_percent=tp_percentATR3_short, limit=tp_priceATR3_short) // Execute Percentage-based exits for Short strategy.exit("TP Percent 1 Short", from_entry="Short", qty_percent=tp_percent1_short, limit=tp_pricePercent1_short) strategy.exit("TP Percent 2 Short", from_entry="Short", qty_percent=tp_percent2_short, limit=tp_pricePercent2_short) strategy.exit("TP Percent 3 Short", from_entry="Short", qty_percent=tp_percent3_short, limit=tp_pricePercent3_short) // Plot VIDYAs plot(fastVIDYA, color=color.green, title="Fast VIDYA") plot(slowVIDYA, color=color.red, title="Slow VIDYA")