Strategi ini adalah sistem perdagangan cerdas yang menggabungkan MACD (Moving Average Convergence Divergence) dan Linear Regression Slope (LRS). Ini mengoptimalkan perhitungan MACD melalui beberapa metode rata-rata bergerak dan menggabungkan analisis regresi linier untuk meningkatkan keandalan sinyal. Strategi ini memungkinkan pedagang untuk memilih secara fleksibel antara kombinasi indikator tunggal atau ganda untuk menghasilkan sinyal perdagangan dan mencakup mekanisme stop-loss dan take-profit untuk pengendalian risiko.
Inti dari strategi ini terletak pada menangkap tren pasar melalui indikator regresi linier dan MACD yang dioptimalkan. Komponen MACD menggunakan kombinasi perhitungan SMA, EMA, WMA, dan TEMA untuk meningkatkan sensitivitas tren harga. Komponen regresi linier mengevaluasi arah dan kekuatan tren melalui kemiringan garis regresi dan analisis posisi. Sinyal beli dapat dihasilkan berdasarkan crossover MACD, uptrends regresi linier, atau kombinasi keduanya. Demikian pula, sinyal jual dapat dikonfigurasi secara fleksibel. Strategi ini mencakup pengaturan stop-loss dan take-profit berbasis persentase untuk manajemen risiko-imbalan yang efektif.
Strategi ini menciptakan sistem perdagangan yang fleksibel dan dapat diandalkan dengan menggabungkan versi indikator klasik yang lebih baik dengan metode statistik. Desain modularnya memungkinkan pedagang untuk menyesuaikan parameter strategi dan mekanisme konfirmasi sinyal sesuai dengan lingkungan pasar yang berbeda.
/*backtest start: 2024-11-10 00:00:00 end: 2024-12-09 08:00:00 period: 1h basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=6 strategy('SIMPLIFIED MACD & LRS Backtest by NHBProd', overlay=false) // Function to calculate TEMA (Triple Exponential Moving Average) tema(src, length) => ema1 = ta.ema(src, length) ema2 = ta.ema(ema1, length) ema3 = ta.ema(ema2, length) 3 * (ema1 - ema2) + ema3 // MACD Calculation Function macdfx(src, fast_length, slow_length, signal_length, method) => fast_ma = method == 'SMA' ? ta.sma(src, fast_length) : method == 'EMA' ? ta.ema(src, fast_length) : method == 'WMA' ? ta.wma(src, fast_length) : tema(src, fast_length) slow_ma = method == 'SMA' ? ta.sma(src, slow_length) : method == 'EMA' ? ta.ema(src, slow_length) : method == 'WMA' ? ta.wma(src, slow_length) : tema(src, slow_length) macd = fast_ma - slow_ma signal = method == 'SMA' ? ta.sma(macd, signal_length) : method == 'EMA' ? ta.ema(macd, signal_length) : method == 'WMA' ? ta.wma(macd, signal_length) : tema(macd, signal_length) hist = macd - signal [macd, signal, hist] // MACD Inputs useMACD = input(true, title="Use MACD for Signals") src = input(close, title="MACD Source") fastp = input(12, title="MACD Fast Length") slowp = input(26, title="MACD Slow Length") signalp = input(9, title="MACD Signal Length") macdMethod = input.string('EMA', title='MACD Method', options=['EMA', 'SMA', 'WMA', 'TEMA']) // MACD Calculation [macd, signal, hist] = macdfx(src, fastp, slowp, signalp, macdMethod) // Linear Regression Inputs useLR = input(true, title="Use Linear Regression for Signals") lrLength = input(24, title="Linear Regression Length") lrSource = input(close, title="Linear Regression Source") lrSignalSelector = input.string('Rising Linear', title='Signal Selector', options=['Price Above Linear', 'Rising Linear', 'Both']) // Linear Regression Calculation linReg = ta.linreg(lrSource, lrLength, 0) linRegPrev = ta.linreg(lrSource, lrLength, 1) slope = linReg - linRegPrev // Linear Regression Buy Signal lrBuySignal = lrSignalSelector == 'Price Above Linear' ? (close > linReg) : lrSignalSelector == 'Rising Linear' ? (slope > 0 and slope > slope[1]) : lrSignalSelector == 'Both' ? (close > linReg and slope > 0) : false // MACD Crossover Signals macdCrossover = ta.crossover(macd, signal) // Buy Signals based on user choices macdSignal = useMACD and macdCrossover lrSignal = useLR and lrBuySignal // Buy condition: Use AND condition if both are selected, OR condition if only one is selected buySignal = (useMACD and useLR) ? (macdSignal and lrSignal) : (macdSignal or lrSignal) // Plot MACD hline(0, title="Zero Line", color=color.gray) plot(macd, color=color.blue, title="MACD Line", linewidth=2) plot(signal, color=color.orange, title="Signal Line", linewidth=2) plot(hist, color=hist >= 0 ? color.green : color.red, style=plot.style_columns, title="MACD Histogram") // Plot Linear Regression Line and Slope plot(slope, color=slope > 0 ? color.purple : color.red, title="Slope", linewidth=2) plot(linReg,title="lingreg") // Signal Plot for Visualization plotshape(buySignal, style=shape.labelup, location=location.bottom, color=color.new(color.green, 0), title="Buy Signal", text="Buy") // Sell Signals for Exiting Long Positions macdCrossunder = ta.crossunder(macd, signal) // MACD Crossunder for Sell Signal lrSellSignal = lrSignalSelector == 'Price Above Linear' ? (close < linReg) : lrSignalSelector == 'Rising Linear' ? (slope < 0 and slope < slope[1]) : lrSignalSelector == 'Both' ? (close < linReg and slope < 0) : false // User Input for Exit Signals: Select indicators to use for exiting trades useMACDSell = input(true, title="Use MACD for Exit Signals") useLRSell = input(true, title="Use Linear Regression for Exit Signals") // Sell condition: Use AND condition if both are selected to trigger a sell at the same time, OR condition if only one is selected sellSignal = (useMACDSell and useLRSell) ? (macdCrossunder and lrSellSignal) : (useMACDSell ? macdCrossunder : false) or (useLRSell ? lrSellSignal : false) // Plot Sell Signals for Visualization (for exits, not short trades) plotshape(sellSignal, style=shape.labeldown, location=location.top, color=color.new(color.red, 0), title="Sell Signal", text="Sell") // Alerts alertcondition(buySignal, title="Buy Signal", message="Buy signal detected!") alertcondition(sellSignal, title="Sell Signal", message="Sell signal detected!") // Take Profit and Stop Loss Inputs takeProfit = input.float(10.0, title="Take Profit (%)") // Take Profit in percentage stopLoss = input.float(0.10, title="Stop Loss (%)") // Stop Loss in percentage // Backtest Date Range startDate = input(timestamp("2024-01-01 00:00"), title="Start Date") endDate = input(timestamp("2025-12-12 00:00"), title="End Date") inBacktestPeriod = true // Entry Rules (Only Long Entries) if (buySignal and inBacktestPeriod) strategy.entry("Buy", strategy.long) // Exit Rules (Only for Long Positions) strategy.exit("Exit Buy", from_entry="Buy", limit=close * (1 + takeProfit / 100), stop=close * (1 - stopLoss / 100)) // Exit Long Position Based on Sell Signals if (sellSignal and inBacktestPeriod) strategy.close("Buy", comment="Exit Signal")