Ini adalah strategi yang mengikuti tren adaptif berdasarkan beberapa indikator teknis yang secara otomatis menyesuaikan parameter sesuai dengan karakteristik pasar yang berbeda. Strategi ini menggabungkan aliran uang Chaikin (CMF), osilator harga terdetensi (DPO), dan kurva Coppock untuk menangkap tren pasar, dengan faktor penyesuaian volatilitas untuk beradaptasi dengan fitur pasar yang berbeda. Ini mencakup sistem manajemen posisi dan pengendalian risiko yang komprehensif yang secara dinamis menyesuaikan ukuran perdagangan berdasarkan volatilitas pasar.
Logika inti dari strategi ini adalah untuk mengkonfirmasi arah tren dan waktu perdagangan melalui kerjasama multi indikator: 1. Menggunakan indikator CMF untuk mengukur arus uang dan menilai sentimen pasar 2. Mempekerjakan DPO untuk menghilangkan pengaruh tren jangka panjang dan fokus pada fluktuasi harga jangka menengah dan pendek 3. Mengadopsi indikator Coppock yang dimodifikasi untuk menangkap titik balik tren 4. Menghasilkan sinyal perdagangan hanya ketika ketiga indikator mengkonfirmasi 5. Secara dinamis menghitung tingkat stop-loss dan take-profit menggunakan ATR 6. Mengatur secara otomatis leverage dan volatilitas parameter berdasarkan karakteristik pasar yang berbeda (saham, forex, berjangka)
Strategi ini adalah sistem trend yang menyeluruh yang menyeimbangkan pengembalian dan risiko melalui beberapa indikator dan mekanisme pengendalian risiko. Strategi ini memiliki ekstensibilitas yang kuat dengan ruang yang signifikan untuk optimasi. Disarankan untuk memulai dengan skala kecil dalam perdagangan langsung, secara bertahap meningkatkan ukuran perdagangan, sambil terus memantau kinerja strategi dan menyesuaikan parameter tepat waktu.
/*backtest start: 2019-12-23 08:00:00 end: 2024-12-10 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Multi-Market Adaptive Trading Strategy", overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=10) // Input parameters i_market_type = input.string("Crypto", "Market Type", options=["Forex", "Crypto", "Futures"]) i_risk_percent = input.float(1, "Risk Per Trade (%)", minval=0.1, maxval=100, step=0.1) i_volatility_adjustment = input.float(1.0, "Volatility Adjustment", minval=0.1, maxval=5.0, step=0.1) i_max_position_size = input.float(5.0, "Max Position Size (%)", minval=1.0, maxval=100.0, step=1.0) i_max_open_trades = input.int(3, "Max Open Trades", minval=1, maxval=10) // Indicator Parameters i_cmf_length = input.int(20, "CMF Length", minval=1) i_dpo_length = input.int(21, "DPO Length", minval=1) i_coppock_short = input.int(11, "Coppock Short ROC", minval=1) i_coppock_long = input.int(14, "Coppock Long ROC", minval=1) i_coppock_wma = input.int(10, "Coppock WMA", minval=1) i_atr_length = input.int(14, "ATR Length", minval=1) // Market-specific Adjustments volatility_factor = i_market_type == "Forex" ? 0.1 : i_market_type == "Futures" ? 1.5 : 1.0 volatility_factor *= i_volatility_adjustment leverage = i_market_type == "Forex" ? 100.0 : i_market_type == "Futures" ? 20.0 : 3.0 // Calculate Indicators mf_multiplier = ((close - low) - (high - close)) / (high - low) mf_volume = mf_multiplier * volume cmf = ta.sma(mf_volume, i_cmf_length) / ta.sma(volume, i_cmf_length) dpo_offset = math.floor(i_dpo_length / 2) + 1 dpo = close - ta.sma(close, i_dpo_length)[dpo_offset] roc1 = ta.roc(close, i_coppock_short) roc2 = ta.roc(close, i_coppock_long) coppock = ta.wma(roc1 + roc2, i_coppock_wma) atr = ta.atr(i_atr_length) // Define Entry Conditions long_condition = cmf > 0 and dpo > 0 and coppock > 0 and ta.crossover(coppock, 0) short_condition = cmf < 0 and dpo < 0 and coppock < 0 and ta.crossunder(coppock, 0) // Calculate Position Size account_size = strategy.equity risk_amount = math.min(account_size * (i_risk_percent / 100), account_size * (i_max_position_size / 100)) position_size = (risk_amount / (atr * volatility_factor)) * leverage // Execute Trades if (long_condition and strategy.opentrades < i_max_open_trades) sl_price = close - (atr * 2 * volatility_factor) tp_price = close + (atr * 3 * volatility_factor) strategy.entry("Long", strategy.long, qty=position_size) strategy.exit("Long Exit", "Long", stop=sl_price, limit=tp_price) if (short_condition and strategy.opentrades < i_max_open_trades) sl_price = close + (atr * 2 * volatility_factor) tp_price = close - (atr * 3 * volatility_factor) strategy.entry("Short", strategy.short, qty=position_size) strategy.exit("Short Exit", "Short", stop=sl_price, limit=tp_price) // Plot Indicators plot(cmf, color=color.blue, title="CMF") plot(dpo, color=color.green, title="DPO") plot(coppock, color=color.red, title="Coppock") hline(0, "Zero Line", color=color.gray) // Alerts alertcondition(long_condition, title="Long Entry", message="Potential Long Entry Signal") alertcondition(short_condition, title="Short Entry", message="Potential Short Entry Signal") // // Performance reporting // if barstate.islastconfirmedhistory // label.new(bar_index, high, text="Strategy Performance:\nTotal Trades: " + str.tostring(strategy.closedtrades) + // "\nWin Rate: " + str.tostring(strategy.wintrades / strategy.closedtrades * 100, "#.##") + "%" + // "\nProfit Factor: " + str.tostring(strategy.grossprofit / strategy.grossloss, "#.##"))