Sumber dimuat naik... memuat...

Indeks Berubah Purata Dinamik Trend Keuntungan Berbilang Tahap Mengikut Strategi

Penulis:ChaoZhang, Tarikh: 2024-12-12 14:29:53
Tag:BBATRCMOTPMO

Chande Momentum Oscillator (MO)

Bollinger Band sebagai penapis turun naik: Band atas = MA + (K * StdDev) Band bawah = MA - (K * StdDev)

Syarat kemasukan: - Long: Harga pecah di atas VIDYA perlahan dengan aliran VIDYA pesat ke atas dan harga di atas Bollinger Band atas - Pendek: Harga pecah di bawah VIDYA perlahan dengan aliran VIDYA cepat ke bawah dan harga di bawah Bollinger Band bawah

Mekanisme mengambil keuntungan berbilang peringkat termasuk: 1. mengambil keuntungan berasaskan ATR 2. Mengambil keuntungan berasaskan peratusan 3. Pengganda untuk peratusan keuntungan perdagangan pendek

Kelebihan Strategi

  1. Kebolehsesuaian Dinamik: Indikator VIDYA menyesuaikan diri secara automatik dengan turun naik pasaran, lebih sensitif daripada purata bergerak tradisional
  2. Pengurusan Risiko yang kukuh: Mekanisme mengambil keuntungan berbilang peringkat mengunci keuntungan pada tahap harga yang berbeza
  3. Penanganan Berbeza: Strategi mengambil keuntungan yang berbeza untuk kedudukan panjang dan pendek sejajar dengan ciri pasaran
  4. Penapisan Volatiliti: Bollinger Bands membantu menapis isyarat pecah palsu
  5. Parameter fleksibel: Parameter yang boleh diselaraskan untuk keadaan pasaran yang berbeza

Risiko Strategi

  1. Risiko pasaran berbelit-belit: Boleh menghasilkan isyarat palsu di pasaran yang berbeza
  2. Kesan Slippage: Pelbagai tahap mengambil keuntungan mungkin mengalami penyimpangan pelaksanaan harga
  3. Kebergantungan parameter: persekitaran pasaran yang berbeza mungkin memerlukan pelarasan parameter yang kerap
  4. Kerumitan Sistem: Mekanisme mengambil keuntungan pelbagai peringkat meningkatkan kerumitan strategi
  5. Tekanan Pengurusan Kedudukan: Pelbagai tahap mengambil keuntungan boleh merumitkan pengurusan kedudukan

Arahan pengoptimuman

  1. Penyesuaian Parameter Dinamik: Membangunkan sistem parameter adaptif untuk penyesuaian keadaan pasaran secara automatik
  2. Pengiktirafan persekitaran pasaran: Tambah modul pengenalan keadaan pasaran untuk menukar parameter
  3. Pengoptimuman Stop Loss: Melaksanakan mekanisme stop-loss dinamik untuk meningkatkan kawalan risiko
  4. Penapisan isyarat: Tambah jumlah dan penunjuk tambahan lain untuk meningkatkan kebolehpercayaan isyarat
  5. Pengurusan Kedudukan: Membangunkan algoritma peruntukan kedudukan yang lebih pintar

Ringkasan

Strategi ini mewujudkan sistem trend berikut yang komprehensif dengan menggabungkan kebolehsesuaian dinamik penunjuk VIDYA dengan penapisan turun naik Bollinger Bands. Mekanisme pengambilan keuntungan pelbagai peringkat dan pengendalian panjang / pendek yang berbeza memberikan potensi keuntungan yang kuat dan kawalan risiko. Walau bagaimanapun, pengguna perlu memantau perubahan persekitaran pasaran, menyesuaikan parameter dengan sewajarnya, dan mewujudkan sistem pengurusan wang yang kukuh. Pengoptimuman strategi selanjutnya harus memberi tumpuan kepada penyesuaian parameter, pengenalan persekitaran pasaran, dan peningkatan kawalan risiko.


/*backtest
start: 2019-12-23 08:00:00
end: 2024-12-10 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © PresentTrading

// This strategy, "VIDYA ProTrend Multi-Tier Profit," is a trend-following system that utilizes fast and slow VIDYA indicators 
// to identify entry and exit points based on the direction and strength of the trend. 
// It incorporates Bollinger Bands as a volatility filter and features a multi-step take profit mechanism, 
// with adjustable ATR-based and percentage-based profit targets for both long and short positions. 
// The strategy allows for more aggressive take profit settings for short trades, making it adaptable to varying market conditions.

//@version=5
strategy("VIDYA ProTrend Multi-Tier Profit", overlay=true, precision=3, commission_value= 0.1, commission_type=strategy.commission.percent, slippage= 1, currency=currency.USD, default_qty_type = strategy.percent_of_equity, default_qty_value = 10, initial_capital=10000)


// User-defined inputs
tradeDirection = input.string(title="Trading Direction", defval="Both", options=["Long", "Short", "Both"])
fastVidyaLength = input.int(10, title="Fast VIDYA Length", minval=1)
slowVidyaLength = input.int(30, title="Slow VIDYA Length", minval=1)
minSlopeThreshold = input.float(0.05, title="Minimum VIDYA Slope Threshold", step=0.01)

// Bollinger Bands Inputs
bbLength = input.int(20, title="Bollinger Bands Length", minval=1)
bbMultiplier = input.float(1.0, title="Bollinger Bands Multiplier", step=0.1)

// Multi-Step Take Profit Settings
group_tp = "Multi-Step Take Profit"
useMultiStepTP = input.bool(true, title="Enable Multi-Step Take Profit", group=group_tp)
tp_direction = input.string(title="Take Profit Direction", defval="Both", options=["Long", "Short", "Both"], group=group_tp)
atrLengthTP =  input.int(14, title="ATR Length", group=group_tp)


// ATR-based Take Profit Steps
atrMultiplierTP1 = input.float(2.618, title="ATR Multiplier for TP 1", group=group_tp)
atrMultiplierTP2 = input.float(5.0, title="ATR Multiplier for TP 2", group=group_tp)
atrMultiplierTP3 = input.float(10.0, title="ATR Multiplier for TP 3", group=group_tp)

// Short Position Multiplier for Take Profit Percentages
shortTPPercentMultiplier = input.float(1.5, title="Short TP Percent Multiplier", group=group_tp)

// Percentage-based Take Profit Steps (Long)
tp_level_percent1 = input.float(title="Take Profit Level 1 (%)", defval=3.0, group=group_tp)
tp_level_percent2 = input.float(title="Take Profit Level 2 (%)", defval=8.0, group=group_tp)
tp_level_percent3 = input.float(title="Take Profit Level 3 (%)", defval=17.0, group=group_tp)

// Percentage-based Take Profit Allocation (Long)
tp_percent1 = input.float(title="Take Profit Percent 1 (%)", defval=12.0, group=group_tp)
tp_percent2 = input.float(title="Take Profit Percent 2 (%)", defval=8.0, group=group_tp)
tp_percent3 = input.float(title="Take Profit Percent 3 (%)", defval=10.0, group=group_tp)

// ATR-based Take Profit Percent Allocation (Long)
tp_percentATR1 = input.float(title="ATR TP Percent 1 (%)", defval=10.0, group=group_tp)
tp_percentATR2 = input.float(title="ATR TP Percent 2 (%)", defval=10.0, group=group_tp)
tp_percentATR3 = input.float(title="ATR TP Percent 3 (%)", defval=10.0, group=group_tp)

// Short position percentage allocations using the multiplier
tp_percent1_short = tp_percent1 * shortTPPercentMultiplier
tp_percent2_short = tp_percent2 * shortTPPercentMultiplier
tp_percent3_short = tp_percent3 * shortTPPercentMultiplier

tp_percentATR1_short = tp_percentATR1 * shortTPPercentMultiplier
tp_percentATR2_short = tp_percentATR2 * shortTPPercentMultiplier
tp_percentATR3_short = tp_percentATR3 * shortTPPercentMultiplier

// VIDYA Calculation Function
calcVIDYA(src, length) =>
    alpha = 2 / (length + 1)
    momm = ta.change(src)
    m1 = momm >= 0.0 ? momm : 0.0
    m2 = momm < 0.0 ? -momm : 0.0
    sm1 = math.sum(m1, length)
    sm2 = math.sum(m2, length)
    chandeMO = nz(100 * (sm1 - sm2) / (sm1 + sm2))
    k = math.abs(chandeMO) / 100
    var float vidya = na
    vidya := na(vidya[1]) ? src : (alpha * k * src + (1 - alpha * k) * vidya[1])
    vidya

// Calculate VIDYAs
fastVIDYA = calcVIDYA(close, fastVidyaLength)
slowVIDYA = calcVIDYA(close, slowVidyaLength)

// Bollinger Bands Calculation
[bbUpper, bbBasis, bbLower] = ta.bb(close, bbLength, bbMultiplier)

// Manual Slope Calculation (price difference over time)
calcSlope(current, previous, length) =>
    (current - previous) / length

// Slope of fast and slow VIDYA (comparing current value with value 'length' bars ago)
fastSlope = calcSlope(fastVIDYA, fastVIDYA[fastVidyaLength], fastVidyaLength)
slowSlope = calcSlope(slowVIDYA, slowVIDYA[slowVidyaLength], slowVidyaLength)

// Conditions for long entry with Bollinger Bands filter
longCondition = close > slowVIDYA and fastVIDYA > slowSlope and fastSlope > minSlopeThreshold and slowSlope > 1/2*minSlopeThreshold and close > bbUpper

// Conditions for short entry with Bollinger Bands filter
shortCondition = close < slowVIDYA and fastSlope < slowSlope and fastSlope < -minSlopeThreshold and slowSlope < -1/2*minSlopeThreshold and close < bbLower

// Exit conditions (opposite crossovers or flat slopes)
exitLongCondition = fastSlope < -minSlopeThreshold and slowSlope < -1/2*minSlopeThreshold or shortCondition
exitShortCondition = fastSlope > minSlopeThreshold and slowSlope > 1/2*minSlopeThreshold or longCondition

// Entry and Exit logic with trading direction
if (longCondition) and (strategy.position_size == 0) and (tradeDirection == "Long" or tradeDirection == "Both")
    strategy.entry("Long", strategy.long)

if (exitLongCondition) and strategy.position_size > 0 and (tradeDirection == "Long" or tradeDirection == "Both")
    strategy.close("Long")

if (shortCondition) and (strategy.position_size == 0) and (tradeDirection == "Short" or tradeDirection == "Both")
    strategy.entry("Short", strategy.short)

if (exitShortCondition) and strategy.position_size < 0 and (tradeDirection == "Short" or tradeDirection == "Both")
    strategy.close("Short")


if useMultiStepTP
    if strategy.position_size > 0 and (tp_direction == "Long" or tp_direction == "Both")
        // ATR-based Take Profit (Long)
        tp_priceATR1_long = strategy.position_avg_price + atrMultiplierTP1 * ta.atr(atrLengthTP)
        tp_priceATR2_long = strategy.position_avg_price + atrMultiplierTP2 * ta.atr(atrLengthTP)
        tp_priceATR3_long = strategy.position_avg_price + atrMultiplierTP3 * ta.atr(atrLengthTP)
        
        // Percentage-based Take Profit (Long)
        tp_pricePercent1_long = strategy.position_avg_price * (1 + tp_level_percent1 / 100)
        tp_pricePercent2_long = strategy.position_avg_price * (1 + tp_level_percent2 / 100)
        tp_pricePercent3_long = strategy.position_avg_price * (1 + tp_level_percent3 / 100)

        // Execute ATR-based exits for Long
        strategy.exit("TP ATR 1 Long", from_entry="Long", qty_percent=tp_percentATR1, limit=tp_priceATR1_long)
        strategy.exit("TP ATR 2 Long", from_entry="Long", qty_percent=tp_percentATR2, limit=tp_priceATR2_long)
        strategy.exit("TP ATR 3 Long", from_entry="Long", qty_percent=tp_percentATR3, limit=tp_priceATR3_long)
        
        // Execute Percentage-based exits for Long
        strategy.exit("TP Percent 1 Long", from_entry="Long", qty_percent=tp_percent1, limit=tp_pricePercent1_long)
        strategy.exit("TP Percent 2 Long", from_entry="Long", qty_percent=tp_percent2, limit=tp_pricePercent2_long)
        strategy.exit("TP Percent 3 Long", from_entry="Long", qty_percent=tp_percent3, limit=tp_pricePercent3_long)

    if strategy.position_size < 0 and (tp_direction == "Short" or tp_direction == "Both")
        // ATR-based Take Profit (Short) - using the same ATR levels as long
        tp_priceATR1_short = strategy.position_avg_price - atrMultiplierTP1 * ta.atr(atrLengthTP)
        tp_priceATR2_short = strategy.position_avg_price - atrMultiplierTP2 * ta.atr(atrLengthTP)
        tp_priceATR3_short = strategy.position_avg_price - atrMultiplierTP3 * ta.atr(atrLengthTP)
        
        // Percentage-based Take Profit (Short) - using the same levels, but more aggressive percentages
        tp_pricePercent1_short = strategy.position_avg_price * (1 - tp_level_percent1 / 100)
        tp_pricePercent2_short = strategy.position_avg_price * (1 - tp_level_percent2 / 100)
        tp_pricePercent3_short = strategy.position_avg_price * (1 - tp_level_percent3 / 100)

        // Execute ATR-based exits for Short (using the percentage multiplier for short)
        strategy.exit("TP ATR 1 Short", from_entry="Short", qty_percent=tp_percentATR1_short, limit=tp_priceATR1_short)
        strategy.exit("TP ATR 2 Short", from_entry="Short", qty_percent=tp_percentATR2_short, limit=tp_priceATR2_short)
        strategy.exit("TP ATR 3 Short", from_entry="Short", qty_percent=tp_percentATR3_short, limit=tp_priceATR3_short)
        
        // Execute Percentage-based exits for Short
        strategy.exit("TP Percent 1 Short", from_entry="Short", qty_percent=tp_percent1_short, limit=tp_pricePercent1_short)
        strategy.exit("TP Percent 2 Short", from_entry="Short", qty_percent=tp_percent2_short, limit=tp_pricePercent2_short)
        strategy.exit("TP Percent 3 Short", from_entry="Short", qty_percent=tp_percent3_short, limit=tp_pricePercent3_short)
// Plot VIDYAs
plot(fastVIDYA, color=color.green, title="Fast VIDYA")
plot(slowVIDYA, color=color.red, title="Slow VIDYA")


Berkaitan

Lebih lanjut