This is a quantitative trading strategy that utilizes pivot points as entry signals. It calculates rising pivot points and falling pivot points. Once the price breaks through these pivot points, it will initiate long or short positions.
This strategy is mainly based on the pivot reversal theory. It first calculates the pivot points based on the left N bars and right M bars. Then it monitors in real time whether the price breaks through these pivot points.
When the price breaks through the rising pivot point, it means the upward momentum is no longer enough to continue pushing up the price. At this time, going short can yield good returns. When the price breaks through the falling pivot point, it means that the downward momentum has been exhausted. At this time, going long can obtain good returns.
Specifically, this strategy calculates the rising pivot points and falling pivot points through the ta.pivothigh and ta.pivotlow functions. Then it compares whether the current highest price breaks through the rising pivot point and whether the lowest price breaks through the falling pivot point. If there is a breakthrough, the corresponding long or short strategy will be initiated.
In addition, this strategy also uses stop loss to control risks. Specifically, when the price breaks through the pivot point, it immediately places an order while setting the stop loss at the other side of the pivot point. This can minimize the loss caused by a failed signal.
This pivot reversal based strategy has the following advantages:
This strategy also has some risks to note:
To reduce risks, the following aspects can be considered:
There is room for further optimization of this strategy:
These optimizations could improve the win rate, profitability, and stability of the strategy.
In summary, this is a quantitative trading strategy based on the pivot reversal theory. It uses price breakthrough pivot points as trading signals while adopting stop loss to control risks. This strategy is easy to implement and widely applicable, making it a practical quantitative trading strategy. But it also bears some risks and needs further testing and optimization to find the optimal configuration in real trading.
/*backtest start: 2022-12-05 00:00:00 end: 2023-12-11 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy('Weekly Returns with Benchmark', overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=25, commission_type=strategy.commission.percent, commission_value=0.1) //////////// // Inputs // // Pivot points inputs leftBars = input(2, group = "Pivot Points") rightBars = input(1, group = "Pivot Points") // Styling inputs prec = input(1, title='Return Precision', group = "Weekly Table") from_date = input(timestamp("01 Jan 3000 00:00 +0000"), "From Date", group = "Weekhly Table") prof_color = input.color(color.green, title = "Gradient Colors", group = "Weeky Table", inline = "colors") loss_color = input.color(color.red, title = "", group = "Weeky Table", inline = "colors") // Benchmark inputs use_cur = input.bool(true, title = "Use current Symbol for Benchmark", group = "Benchmark") symb_bench = input('BTC_USDT:swap', title = "Benchmark", group = "Benchmark") disp_bench = input.bool(false, title = "Display Benchmark?", group = "Benchmark") disp_alpha = input.bool(false, title = "Display Alpha?", group = "Benchmark") // Pivot Points Strategy swh = ta.pivothigh(leftBars, rightBars) swl = ta.pivotlow (leftBars, rightBars) hprice = 0.0 hprice := not na(swh) ? swh : hprice[1] lprice = 0.0 lprice := not na(swl) ? swl : lprice[1] le = false le := not na(swh) ? true : le[1] and high > hprice ? false : le[1] se = false se := not na(swl) ? true : se[1] and low < lprice ? false : se[1] if le strategy.entry('PivRevLE', strategy.long, comment='PivRevLE', stop=hprice + syminfo.mintick) if se strategy.entry('PivRevSE', strategy.short, comment='PivRevSE', stop=lprice - syminfo.mintick) plot(hprice, color=color.new(color.green, 0), linewidth=2) plot(lprice, color=color.new(color.red, 0), linewidth=2) /////////////////// // WEEKLY TABLE // new_week = weekofyear(time[1]) != weekofyear(time) new_year = year(time) != year(time[1]) eq = strategy.equity bench_eq = close // benchmark eq bench_eq_htf = request.security(symb_bench, timeframe.period, close) if (not use_cur) bench_eq := bench_eq_htf bar_pnl = eq / eq[1] - 1 bench_pnl = bench_eq / bench_eq[1] - 1 // Current Weekly P&L cur_week_pnl = 0.0 cur_week_pnl := bar_index == 0 ? 0 : time >= from_date and (time[1] < from_date or new_week) ? bar_pnl : (1 + cur_week_pnl[1]) * (1 + bar_pnl) - 1 // Current Yearly P&L cur_year_pnl = 0.0 cur_year_pnl := bar_index == 0 ? 0 : time >= from_date and (time[1] < from_date or new_year) ? bar_pnl : (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1 // Current Weekly P&L - Bench bench_cur_week_pnl = 0.0 bench_cur_week_pnl := bar_index == 0 or (time[1] < from_date and time >= from_date) ? 0 : time >= from_date and new_week ? bench_pnl : (1 + bench_cur_week_pnl[1]) * (1 + bench_pnl) - 1 // Current Yearly P&L - Bench bench_cur_year_pnl = 0.0 bench_cur_year_pnl := bar_index == 0 ? 0 : time >= from_date and (time[1] < from_date or new_year) ? bench_pnl : (1 + bench_cur_year_pnl[1]) * (1 + bench_pnl) - 1 var week_time = array.new_int(0) var year_time = array.new_int(0) var week_pnl = array.new_float(0) var year_pnl = array.new_float(0) var bench_week_pnl = array.new_float(0) var bench_year_pnl = array.new_float(0) // Filling weekly / yearly pnl arrays if array.size(week_time) > 0 if weekofyear(time) == weekofyear(array.get(week_time, array.size(week_time) - 1)) array.pop(week_pnl) array.pop(bench_week_pnl) array.pop(week_time) if array.size(year_time) > 0 if year(time) == year(array.get(year_time, array.size(year_time) - 1)) array.pop(year_pnl) array.pop(bench_year_pnl) array.pop(year_time) if (time >= from_date) array.push(week_time, time) array.push(year_time, time) array.push(week_pnl, cur_week_pnl) array.push(year_pnl, cur_year_pnl) array.push(bench_year_pnl, bench_cur_year_pnl) array.push(bench_week_pnl, bench_cur_week_pnl) // Weekly P&L Table table_size = size.tiny var weekly_table = table(na) if array.size(year_pnl) > 0 and barstate.islastconfirmedhistory weekly_table := table.new(position.bottom_right, columns=56, rows=array.size(year_pnl) * 3 + 5, border_width=1) // Fill weekly performance table.cell(weekly_table, 0, 0, 'Perf', bgcolor = #999999, text_size= table_size) for numW = 1 to 53 by 1 table.cell(weekly_table, numW, 0, str.tostring(numW), bgcolor= #999999, text_size= table_size) table.cell(weekly_table, 54, 0, ' ', bgcolor = #999999, text_size= table_size) table.cell(weekly_table, 55, 0, 'Year', bgcolor = #999999, text_size= table_size) max_abs_y = math.max(math.abs(array.max(year_pnl)), math.abs(array.min(year_pnl))) max_abs_m = math.max(math.abs(array.max(week_pnl)), math.abs(array.min(week_pnl))) for yi = 0 to array.size(year_pnl) - 1 by 1 table.cell(weekly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc, text_size=table_size) table.cell(weekly_table, 53, yi + 1, ' ', bgcolor=#999999, text_size=table_size) table.cell(weekly_table, 54, yi + 1, ' ', bgcolor=#999999, text_size=table_size) y_color = color.from_gradient(array.get(year_pnl, yi), -max_abs_y, max_abs_y, loss_color, prof_color) table.cell(weekly_table, 55, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor=y_color, text_size=table_size) int iw_row= na int iw_col= na for wi = 0 to array.size(week_time) - 2 by 1 w_row = year(array.get(week_time, wi)) - year(array.get(year_time, 0)) + 1 w_col = weekofyear(array.get(week_time, wi)) w_color = color.from_gradient(array.get(week_pnl, wi), -max_abs_m, max_abs_m, loss_color, prof_color) if iw_row + 1 == w_row and iw_col + 1 == w_col table.cell(weekly_table, w_col, w_row-1, str.tostring(math.round(array.get(week_pnl, wi) * 100, prec)), bgcolor=w_color, text_size=table_size) else table.cell(weekly_table, w_col, w_row, str.tostring(math.round(array.get(week_pnl, wi) * 100, prec)), bgcolor=w_color, text_size=table_size) iw_row:= w_row iw_col:= w_col // Fill benchmark performance next_row = array.size(year_pnl) + 1 if (disp_bench) table.cell(weekly_table, 0, next_row, 'Bench', bgcolor=#999999, text_size=table_size) for numW = 1 to 53 by 1 table.cell(weekly_table, numW, next_row, str.tostring(numW), bgcolor= #999999, text_size= table_size) table.cell(weekly_table, 54, next_row, ' ' , bgcolor = #999999, text_size=table_size) table.cell(weekly_table, 55, next_row, 'Year', bgcolor = #999999, text_size=table_size) max_bench_abs_y = math.max(math.abs(array.max(bench_year_pnl)), math.abs(array.min(bench_year_pnl))) max_bench_abs_w = math.max(math.abs(array.max(bench_week_pnl)), math.abs(array.min(bench_week_pnl))) for yi = 0 to array.size(year_time) - 1 by 1 table.cell(weekly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc, text_size=table_size) table.cell(weekly_table, 53, yi + 1 + next_row + 1, ' ', bgcolor=#999999, text_size=table_size) table.cell(weekly_table, 54, yi + 1 + next_row + 1, ' ', bgcolor=#999999, text_size=table_size) y_color = color.from_gradient(array.get(bench_year_pnl, yi), -max_bench_abs_y, max_bench_abs_y, loss_color, prof_color) table.cell(weekly_table, 55, yi + 1 + next_row + 1, str.tostring(math.round(array.get(bench_year_pnl, yi) * 100, prec)), bgcolor=y_color, text_size=table_size) int iw_row1= na int iw_col1= na for wi = 0 to array.size(week_time) - 1 by 1 w_row = year(array.get(week_time, wi)) - year(array.get(year_time, 0)) + 1 w_col = weekofyear(array.get(week_time, wi)) w_color = color.from_gradient(array.get(bench_week_pnl, wi), -max_bench_abs_w, max_bench_abs_w, loss_color, prof_color) if iw_row1 + 1 == w_row and iw_col1 + 1 == w_col table.cell(weekly_table, w_col, w_row + next_row , str.tostring(math.round(array.get(bench_week_pnl, wi) * 100, prec)), bgcolor=w_color, text_size=table_size) else table.cell(weekly_table, w_col, w_row + next_row + 1, str.tostring(math.round(array.get(bench_week_pnl, wi) * 100, prec)), bgcolor=w_color, text_size=table_size) iw_row1:= w_row iw_col1:= w_col // Fill Alpha if (disp_alpha) // columns next_row := array.size(year_pnl) * 2 + 3 table.cell(weekly_table, 0, next_row, 'Alpha', bgcolor=#999999, text_size= table_size) for numW = 1 to 53 by 1 table.cell(weekly_table, numW, next_row, str.tostring(numW), bgcolor= #999999, text_size= table_size) table.cell(weekly_table, 54, next_row, ' ' , bgcolor=#999999, text_size= table_size) table.cell(weekly_table, 55, next_row, 'Year', bgcolor=#999999, text_size= table_size) max_alpha_abs_y = 0.0 for yi = 0 to array.size(year_time) - 1 by 1 if (math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) > max_alpha_abs_y) max_alpha_abs_y := math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) max_alpha_abs_w = 0.0 for wi = 0 to array.size(week_pnl) - 1 by 1 if (math.abs(array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) > max_alpha_abs_w) max_alpha_abs_w := math.abs(array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) for yi = 0 to array.size(year_time) - 1 by 1 table.cell(weekly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc, text_size= table_size) table.cell(weekly_table, 53, yi + 1 + next_row + 1, ' ', bgcolor=#999999, text_size= table_size) table.cell(weekly_table, 54, yi + 1 + next_row + 1, ' ', bgcolor=#999999, text_size= table_size) y_color = color.from_gradient(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi), -max_alpha_abs_y, max_alpha_abs_y, loss_color, prof_color) table.cell(weekly_table, 55, yi + 1 + next_row + 1, str.tostring(math.round((array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) * 100, prec)), bgcolor=y_color, text_size= table_size) int iw_row2= na int iw_col2= na for wi = 0 to array.size(week_time) - 1 by 1 w_row = year(array.get(week_time, wi)) - year(array.get(year_time, 0)) + 1 w_col = weekofyear(array.get(week_time, wi)) w_color = color.from_gradient(array.get(week_pnl, wi) - array.get(bench_week_pnl, wi), -max_alpha_abs_w, max_alpha_abs_w, loss_color, prof_color) if iw_row2 + 1 == w_row and iw_col2 + 1 == w_col table.cell(weekly_table, w_col, w_row + next_row , str.tostring(math.round((array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) * 100, prec)), bgcolor=w_color, text_size= table_size) else table.cell(weekly_table, w_col, w_row + next_row + 1 , str.tostring(math.round((array.get(week_pnl, wi) - array.get(bench_week_pnl, wi)) * 100, prec)), bgcolor=w_color, text_size= table_size) iw_row2:= w_row iw_col2:= w_col