This is a quantitative trading strategy with multiple factors, which combines RSI, MACD, OBV, CCI, CMF, MFI, VWMACD and other technical indicators to implement automated stock quantitative trading. The strategy name is “Timing Strategy with Multiple Factors for Long and Short”.
The core logic of this strategy is to make judgments based on the patterns of multiple technical indicators. When multiple indicators give buy signals at the same time, buy operations will be executed.
Specifically, the indicators like RSI, MACD, OBV, CCI, CMF, MFI, VWMACD in the strategy will detect whether they show a pattern of slight downward trends while the values of the indicators themselves do not fall. If this happens, it may signify an upcoming rebound. This pattern is called “short squeeze” in the code. If multiple indicators show “short squeeze” at the same time, the final buy signal will be triggered.
In addition, the strategy also introduces the logic to judge abnormal trading volume. When price fluctuates sharply with no significant increase in trading volume, it is likely to be a false breakout. In this case, a buy signal will also be sent out.
In summary, by observing the reversal signals of multiple technical indicators and combining the abnormal judgment of trading volume, the accuracy of decision making can be improved, which is the key to the success of quantitative trading strategies.
The strategy has the following advantages:
Multiple factor model, which combines signals of 7 commonly used technical indicators, improves the accuracy of trading decisions.
Introduction of trading volume reversal signal can avoid being fooled by false breakouts and filter invalid signals.
Early detection of the timing of stock rebound by identifying slight downward patterns.
Automated Trading without manual intervention greatly reduces operating costs.
The strategy logic is simple and clear, easy to understand, modify and optimize.
There are also some risks with this strategy:
Improper combination of multiple factors may generate conflicting trading signals. The parameters of each factor need to be tested and tuned to find the optimal configuration.
Reversal trading itself carries certain risks, with the possibility of being reversed again. Stop loss points can be set to control risks.
VOLUME indicator may underperform for some stocks with low liquidity. In this case, the weight of VOLUME can be reduced or these stocks can be excluded.
The performance in live trading may deteriorate compared with that in historical backtesting. More live trading data should be accumulated for testing.
The strategy can be further optimized in the following aspects:
Add or reduce some technical indicators to find the optimal multi-factor model configuration.
Set different parameters or weights for different types of stocks so that the strategy can be more targeted.
Set dynamic stop loss, moving stop profit to lock in profits and control risks.
Combine industry, concepts and other information to select stocks to trade in specific sectors.
Introduce machine learning algorithms to achieve automatic optimization of strategy parameters.
Overall, this is a very promising quantitative trading strategy. By combining signals from multiple technical indicators and volume reversal judgments, it can effectively identify stock reversal opportunities for automated trading. With proper parameter tuning and risk control, it has the potential to achieve good returns. The idea behind the strategy is innovative and worth further research and application.
/*backtest start: 2023-01-18 00:00:00 end: 2024-01-24 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © mkose81 //@version=5 strategy("MK future stopsuz 40 alım (Sadece Long)", overlay=true, max_bars_back=4000,use_bar_magnifier= true,pyramiding=40) // RSI Hesaplama rsi = ta.rsi(close, 14) float botRSI = na botRSI := ta.pivotlow(5, 5) botcRSI = 0 botcRSI := botRSI ? 5 : nz(botcRSI[1]) + 1 newbotRSI = ta.pivotlow(5, 0) emptylRSI = true if not na(newbotRSI) and newbotRSI < low[botcRSI] diffRSI = (newbotRSI - low[botcRSI]) / botcRSI llineRSI = newbotRSI - diffRSI for x = 1 to botcRSI - 1 by 1 if close[x] < llineRSI emptylRSI := false break llineRSI -= diffRSI emptylRSI // Pozitif Uyumsuzluk Alım Sinyali - RSI alRSI = 0 if emptylRSI and not na(newbotRSI) if rsi[botcRSI] < rsi alRSI := 1 // MACD Hesaplama [macd, signal, _] = ta.macd(close, 21, 55, 8) float botMACD = na botMACD := ta.pivotlow(5, 5) botcMACD = 0 botcMACD := botMACD ? 5 : nz(botcMACD[1]) + 1 newbotMACD = ta.pivotlow(5, 0) emptylMACD = true if not na(newbotMACD) and newbotMACD < low[botcMACD] diffMACD = (newbotMACD - low[botcMACD]) / botcMACD llineMACD = newbotMACD - diffMACD for x = 1 to botcMACD - 1 by 1 if close[x] < llineMACD emptylMACD := false break llineMACD -= diffMACD emptylMACD // Pozitif Uyumsuzluk Alım Sinyali - MACD alMACD = 0 if emptylMACD and not na(newbotMACD) if macd[botcMACD] < macd alMACD := 1 // OBV Hesaplama ve Uyumsuzluk Tespiti obv = ta.cum(ta.change(close) > 0 ? volume : ta.change(close) < 0 ? -volume : 0) float botOBV = na botOBV := ta.pivotlow(5, 5) botcOBV = 0 botcOBV := botOBV ? 5 : nz(botcOBV[1]) + 1 newbotOBV = ta.pivotlow(5, 0) emptylOBV = true if not na(newbotOBV) and newbotOBV < obv[botcOBV] diffOBV = (newbotOBV - obv[botcOBV]) / botcOBV llineOBV = newbotOBV - diffOBV for x = 1 to botcOBV - 1 by 1 if obv[x] < llineOBV emptylOBV := false break llineOBV -= diffOBV emptylOBV // Pozitif Uyumsuzluk Alım Sinyali - OBV alOBV = 0 if emptylOBV and not na(newbotOBV) if obv[botcOBV] < obv alOBV := 1 // CCI Hesaplama ve Uyumsuzluk Tespiti cci = ta.cci(close, 20) float botCCI = na botCCI := ta.pivotlow(5, 5) botcCCI = 0 botcCCI := botCCI ? 5 : nz(botcCCI[1]) + 1 newbotCCI = ta.pivotlow(5, 0) emptylCCI = true if not na(newbotCCI) and newbotCCI < cci[botcCCI] diffCCI = (newbotCCI - cci[botcCCI]) / botcCCI llineCCI = newbotCCI - diffCCI for x = 1 to botcCCI - 1 by 1 if cci[x] < llineCCI emptylCCI := false break llineCCI -= diffCCI emptylCCI // Pozitif Uyumsuzluk Alım Sinyali - CCI alCCI = 0 if emptylCCI and not na(newbotCCI) if cci[botcCCI] < cci alCCI := 1 // CMF Hesaplama length = 20 mfm = ((close - low) - (high - close)) / (high - low) mfv = mfm * volume cmf = ta.sma(mfv, length) / ta.sma(volume, length) float botCMF = na botCMF := ta.pivotlow(5, 5) botcCMF = 0 botcCMF := botCMF ? 5 : nz(botcCMF[1]) + 1 newbotCMF = ta.pivotlow(5, 0) emptylCMF = true if not na(newbotCMF) and newbotCMF < cmf[botcCMF] diffCMF = (newbotCMF - cmf[botcCMF]) / botcCMF llineCMF = newbotCMF - diffCMF for x = 1 to botcCMF - 1 by 1 if cmf[x] < llineCMF emptylCMF := false break llineCMF -= diffCMF emptylCMF // Pozitif Uyumsuzluk Alım Sinyali - CMF alCMF = 0 if emptylCMF and not na(newbotCMF) if cmf[botcCMF] < cmf alCMF := 1 // MFI Hesaplama lengthMFI = 14 mfi = ta.mfi(close, lengthMFI) float botMFI = na botMFI := ta.pivotlow(mfi, 5, 5) botcMFI = 0 botcMFI := botMFI ? 5 : nz(botcMFI[1]) + 1 newbotMFI = ta.pivotlow(mfi, 5, 0) emptylMFI = true if not na(newbotMFI) and newbotMFI < mfi[botcMFI] diffMFI = (newbotMFI - mfi[botcMFI]) / botcMFI llineMFI = newbotMFI - diffMFI for x = 1 to botcMFI - 1 by 1 if mfi[x] < llineMFI emptylMFI := false break llineMFI -= diffMFI emptylMFI // Pozitif Uyumsuzluk Alım Sinyali - MFI alMFI = 0 if emptylMFI and not na(newbotMFI) if mfi[botcMFI] < mfi alMFI := 1 // VWMACD Hesaplama fastLength = 12 slowLength = 26 signalSmoothing = 9 vwmacd = ta.ema(close, fastLength) - ta.ema(close, slowLength) signalLine = ta.ema(vwmacd, signalSmoothing) histogram = vwmacd - signalLine // VWMACD Uyumsuzluk Tespiti float botVWMACD = na botVWMACD := ta.pivotlow(histogram, 5, 5) botcVWMACD = 0 botcVWMACD := botVWMACD ? 5 : nz(botcVWMACD[1]) + 1 newbotVWMACD = ta.pivotlow(histogram, 5, 0) emptylVWMACD = true if not na(newbotVWMACD) and newbotVWMACD < histogram[botcVWMACD] diffVWMACD = (newbotVWMACD - histogram[botcVWMACD]) / botcVWMACD llineVWMACD = newbotVWMACD - diffVWMACD for x = 1 to botcVWMACD - 1 by 1 if histogram[x] < llineVWMACD emptylVWMACD := false break llineVWMACD -= diffVWMACD emptylVWMACD // Pozitif Uyumsuzluk Alım Sinyali - VWMACD alVWMACD = 0 if emptylVWMACD and not na(newbotVWMACD) if histogram[botcVWMACD] < histogram alVWMACD := 1 //Dipci indikator lengthd= 130 coef = 0.2 vcoef = 2.5 signalLength = 5 smoothVFI = false ma(x, y) => smoothVFI ? ta.sma(x, y) : x typical = hlc3 inter = math.log(typical) - math.log(typical[1]) vinter = ta.stdev(inter, 30) cutoff = coef * vinter * close vave = ta.sma(volume, lengthd)[1] vmax = vave * vcoef vc = volume < vmax ? volume : vmax //min( volume, vmax ) mf = typical - typical[1] iff_4 = mf < -cutoff ? -vc : 0 vcp = mf > cutoff ? vc : iff_4 vfi = ma(math.sum(vcp, lengthd) / vave, 3) vfima = ta.ema(vfi, signalLength) d = vfi - vfima // Kullanıcı girdileri volatilityThreshold = input.float(1.005, title="Volume Percentage Threshold") pinThreshold = input.float(1.005, title="Deep Percentage Threshold") // Hesaplamalar volatilityPercentage = (high - low) / open pinPercentage = close > open ? (high - close) / open : (close - low) / open // Volatilite koşulu ve VFI ile filtreleme voldip = volatilityPercentage >= volatilityThreshold or pinPercentage >= pinThreshold volCondition = voldip and vfi< 0 // VFI değeri 0'dan küçükse volCondition aktif olacak threeCommasEntryComment = input.string(title="3Commas Entry Comment", defval="") threeCommasExitComment = input.string(title="3Commas Exit Comment", defval="") takeProfitPerc = input.float(1, title="Take Profit Percentage (%)") / 100 fallPerc = input.float(5, title="Percentage for Additional Buy (%)") / 100 // Değişkenlerin tanımlanması var float lastBuyPrice = na var float tpPrice = na var int lastTpBar = na // Alım koşulları longCondition = alRSI or alMACD or alOBV or alCCI or alCMF or alMFI or alVWMACD or volCondition // Son alım fiyatını saklamak için değişken // İlk alım stratejisi if (longCondition and strategy.position_size == 0) strategy.entry("Long", strategy.long, comment=threeCommasEntryComment) lastBuyPrice := open // İkinci ve sonraki alım koşulları (son alım fiyatının belirlenen yüzde altında) if (open < lastBuyPrice * (1 - fallPerc) and strategy.position_size > 0) strategy.entry("Long Add", strategy.long, comment=threeCommasEntryComment) lastBuyPrice := open // Kar alma fiyatını hesaplama ve strateji çıkışı tp_price = strategy.position_avg_price * (1 + takeProfitPerc) if strategy.position_size > 0 strategy.exit("Exit Long", "Long", limit=tp_price, comment=threeCommasExitComment) strategy.exit("Exit Long Add", "Long Add", limit=tp_price, comment=threeCommasExitComment) tpPrice := na // Pozisyon kapandığında TP çizgisini sıfırla // Kar alma seviyesi çizgisi çizme plot(strategy.position_size > 0 ? tp_price : na, color=color.green, title="Take Profit Line")