La estrategia de trading cuantitativa
La estrategia comienza calculando el Canal de Vegas, que se deriva del promedio móvil simple (SMA) y la desviación estándar (STD) de los precios de cierre durante una longitud de ventana especificada. Este canal ayuda a medir la volatilidad del mercado y forma la base para ajustar el indicador de SuperTrend.
La principal ventaja de la estrategia de trading cuantitativa de SuperTrend ajustada a la volatilidad del canal de Doble Vegas radica en su capacidad para ajustar dinámicamente el indicador de SuperTrend para adaptarse a las condiciones cambiantes del mercado. Al incorporar el ancho del canal de Vegas, la estrategia puede responder mejor a la volatilidad del mercado, mejorando la precisión de la identificación de tendencias. Además, el uso de dos indicadores de SuperTrend con diferentes configuraciones de parámetros proporciona una visión más completa del mercado, ayudando a confirmar tendencias y filtrar señales falsas. Los niveles personalizables de take profit y stop-loss mejoran aún más las capacidades de gestión de riesgos de la estrategia.
Aunque la estrategia tiene como objetivo mejorar la precisión de la identificación de tendencias, todavía hay algunos riesgos involucrados. En primer lugar, la estrategia puede generar señales comerciales falsas durante períodos de volatilidad extremadamente alta o dirección del mercado poco clara. En segundo lugar, la negociación demasiado frecuente puede conducir a altos costos de transacción, lo que afecta al rendimiento general de la estrategia. Para mitigar estos riesgos, los operadores pueden considerar optimizar los parámetros de la estrategia, como ajustar los períodos ATR, las longitudes de la ventana del canal de Vegas y los multiplicadores de SuperTrend para adaptarse a condiciones específicas del mercado. Además, establecer niveles apropiados de toma de ganancias y stop-loss es crucial para controlar las pérdidas potenciales.
La estrategia de negociación cuantitativa de la SuperTendencia Ajustada a la Volatilidad del Canal de Doble Vegas se puede optimizar de varias maneras. Una posible dirección de optimización es incorporar indicadores técnicos adicionales, como el Índice de Fuerza Relativa (RSI) o la Divergencia de Convergencia de la Media Móvil (MACD), para mejorar la confiabilidad de la confirmación de tendencia. Otra dirección de optimización es introducir mecanismos adaptativos que ajustan dinámicamente los parámetros de la estrategia en función de las condiciones del mercado. Esto se puede lograr utilizando algoritmos de aprendizaje automático o enfoques basados en reglas. Además, la optimización de los períodos de tenencia y los niveles de toma de ganancias / parada de pérdidas también pueden mejorar el rendimiento general de la estrategia.
En resumen,
/*backtest start: 2024-05-01 00:00:00 end: 2024-05-31 23:59:59 period: 3h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © PresentTrading // The "Double Vegas SuperTrend Enhanced" strategy uses two SuperTrend indicators with different ATR and Vegas Channel settings // to identify market trends and generate trades. Trades are executed only when both SuperTrends align in the same direction. // The strategy includes configurable take-profit and stop-loss levels, and plots the SuperTrend levels on the chart. //@version=5 strategy("Double Vegas SuperTrend Enhanced - Strategy [presentTrading]", shorttitle="Double Vegas SuperTrend Enhanced - Strategy [presentTrading]", overlay=true, overlay = false, precision=3, commission_value= 0.1, commission_type=strategy.commission.percent, slippage= 1, currency=currency.USD, default_qty_type = strategy.percent_of_equity, default_qty_value = 10, initial_capital= 10000) // Input settings allow the user to customize the strategy's parameters. tradeDirectionChoice = input.string(title="Trade Direction", defval="Both", options=["Long", "Short", "Both"]) // Option to select the trading direction // Settings for the first Vegas SuperTrend atrPeriod1 = input(10, "ATR Period for SuperTrend 1") // Length of the ATR for volatility measurement vegasWindow1 = input(100, "Vegas Window Length 1") // Length of the moving average for the Vegas Channel superTrendMultiplier1 = input(5, "SuperTrend Multiplier Base 1") // Base multiplier for the SuperTrend calculation volatilityAdjustment1 = input.float(5, "Volatility Adjustment Factor 1") // Factor to adjust the SuperTrend sensitivity to the Vegas Channel width // Settings for the second Vegas SuperTrend atrPeriod2 = input(5, "ATR Period for SuperTrend 2") // Length of the ATR for volatility measurement vegasWindow2 = input(200, "Vegas Window Length 2") // Length of the moving average for the Vegas Channel superTrendMultiplier2 = input(7, "SuperTrend Multiplier Base 2") // Base multiplier for the SuperTrend calculation volatilityAdjustment2 = input.float(7, "Volatility Adjustment Factor 2") // Factor to adjust the SuperTrend sensitivity to the Vegas Channel width // Settings for Hold Days and TPSL Conditions useHoldDays = input.bool(true, title="Use Hold Days") holdDays = input.int(5, title="Hold Days", minval=1, maxval=60, step=1) TPSLCondition = input.string("None", "TPSL Condition", options=["TP", "SL", "Both", "None"]) takeProfitPerc = input(30.0, title="Take Profit (%)") stopLossPerc = input(20.0, title="Stop Loss (%)") // Calculate the first Vegas Channel using a simple moving average and standard deviation. vegasMovingAverage1 = ta.sma(close, vegasWindow1) vegasChannelStdDev1 = ta.stdev(close, vegasWindow1) vegasChannelUpper1 = vegasMovingAverage1 + vegasChannelStdDev1 vegasChannelLower1 = vegasMovingAverage1 - vegasChannelStdDev1 // Adjust the first SuperTrend multiplier based on the width of the Vegas Channel. channelVolatilityWidth1 = vegasChannelUpper1 - vegasChannelLower1 adjustedMultiplier1 = superTrendMultiplier1 + volatilityAdjustment1 * (channelVolatilityWidth1 / vegasMovingAverage1) // Calculate the first SuperTrend indicator values. averageTrueRange1 = ta.atr(atrPeriod1) superTrendUpper1 = hlc3 - (adjustedMultiplier1 * averageTrueRange1) superTrendLower1 = hlc3 + (adjustedMultiplier1 * averageTrueRange1) var float superTrendPrevUpper1 = na var float superTrendPrevLower1 = na var int marketTrend1 = 1 // Update SuperTrend values and determine the current trend direction for the first SuperTrend. superTrendPrevUpper1 := nz(superTrendPrevUpper1[1], superTrendUpper1) superTrendPrevLower1 := nz(superTrendPrevLower1[1], superTrendLower1) marketTrend1 := close > superTrendPrevLower1 ? 1 : close < superTrendPrevUpper1 ? -1 : nz(marketTrend1[1], 1) superTrendUpper1 := marketTrend1 == 1 ? math.max(superTrendUpper1, superTrendPrevUpper1) : superTrendUpper1 superTrendLower1 := marketTrend1 == -1 ? math.min(superTrendLower1, superTrendPrevLower1) : superTrendLower1 superTrendPrevUpper1 := superTrendUpper1 superTrendPrevLower1 := superTrendLower1 // Calculate the second Vegas Channel using a simple moving average and standard deviation. vegasMovingAverage2 = ta.sma(close, vegasWindow2) vegasChannelStdDev2 = ta.stdev(close, vegasWindow2) vegasChannelUpper2 = vegasMovingAverage2 + vegasChannelStdDev2 vegasChannelLower2 = vegasMovingAverage2 - vegasChannelStdDev2 // Adjust the second SuperTrend multiplier based on the width of the Vegas Channel. channelVolatilityWidth2 = vegasChannelUpper2 - vegasChannelLower2 adjustedMultiplier2 = superTrendMultiplier2 + volatilityAdjustment2 * (channelVolatilityWidth2 / vegasMovingAverage2) // Calculate the second SuperTrend indicator values. averageTrueRange2 = ta.atr(atrPeriod2) superTrendUpper2 = hlc3 - (adjustedMultiplier2 * averageTrueRange2) superTrendLower2 = hlc3 + (adjustedMultiplier2 * averageTrueRange2) var float superTrendPrevUpper2 = na var float superTrendPrevLower2 = na var int marketTrend2 = 1 // Update SuperTrend values and determine the current trend direction for the second SuperTrend. superTrendPrevUpper2 := nz(superTrendPrevUpper2[1], superTrendUpper2) superTrendPrevLower2 := nz(superTrendPrevLower2[1], superTrendLower2) marketTrend2 := close > superTrendPrevLower2 ? 1 : close < superTrendPrevUpper2 ? -1 : nz(marketTrend2[1], 1) superTrendUpper2 := marketTrend2 == 1 ? math.max(superTrendUpper2, superTrendPrevUpper2) : superTrendUpper2 superTrendLower2 := marketTrend2 == -1 ? math.min(superTrendLower2, superTrendPrevLower2) : superTrendLower2 superTrendPrevUpper2 := superTrendUpper2 superTrendPrevLower2 := superTrendLower2 // Enhanced Visualization // Plot the SuperTrend and Vegas Channel for visual analysis for both lengths. plot(marketTrend1 == 1 ? superTrendUpper1 : na, "SuperTrend Upper 1", color=color.green, linewidth=2) plot(marketTrend1 == -1 ? superTrendLower1 : na, "SuperTrend Lower 1", color=color.red, linewidth=2) plot(marketTrend2 == 1 ? superTrendUpper2 : na, "SuperTrend Upper 2", color=color.rgb(31, 119, 130), linewidth=2) plot(marketTrend2 == -1 ? superTrendLower2 : na, "SuperTrend Lower 2", color=color.rgb(120, 42, 26), linewidth=2) // Detect trend direction changes and plot entry/exit signals for both lengths. trendShiftToBullish1 = marketTrend1 == 1 and marketTrend1[1] == -1 trendShiftToBearish1 = marketTrend1 == -1 and marketTrend1[1] == 1 trendShiftToBullish2 = marketTrend2 == 1 and marketTrend2[1] == -1 trendShiftToBearish2 = marketTrend2 == -1 and marketTrend2[1] == 1 // Define conditions for entering long or short positions, and execute trades based on these conditions for both lengths. enterLongCondition1 = marketTrend1 == 1 enterShortCondition1 = marketTrend1 == -1 enterLongCondition2 = marketTrend2 == 1 enterShortCondition2 = marketTrend2 == -1 // Entry conditions: Both conditions must be met for a trade to be executed. enterLongCondition = enterLongCondition1 and enterLongCondition2 and not na(superTrendPrevUpper1[1]) and not na(superTrendPrevUpper2[1]) enterShortCondition = enterShortCondition1 and enterShortCondition2 and not na(superTrendPrevLower1[1]) and not na(superTrendPrevLower2[1]) // Variables to track entry times var float longEntryTime = na var float shortEntryTime = na // Variables to track whether we have recently exited a trade to prevent re-entry in the same trend var bool recentlyExitedLong = false var bool recentlyExitedShort = false // Check trade direction choice before executing trade entries. if (enterLongCondition and (tradeDirectionChoice == "Long" or tradeDirectionChoice == "Both")) if (strategy.position_size < 0) strategy.close("Short Position") strategy.entry("Long Position", strategy.long) longEntryTime := time recentlyExitedLong := false recentlyExitedShort := false if (enterShortCondition and (tradeDirectionChoice == "Short" or tradeDirectionChoice == "Both")) if (strategy.position_size > 0) strategy.close("Long Position") strategy.entry("Short Position", strategy.short) shortEntryTime := time recentlyExitedShort := false recentlyExitedLong := false // Exit conditions: Either condition being met will trigger an exit. exitLongCondition = marketTrend1 == -1 or marketTrend2 == -1 exitShortCondition = marketTrend1 == 1 or marketTrend2 == 1 // Close positions based on exit conditions or hold days. if (useHoldDays and not na(longEntryTime) and (time >= longEntryTime + holdDays * 86400000) and strategy.position_size > 0) strategy.close("Long Position") longEntryTime := na recentlyExitedLong := true if (useHoldDays and not na(shortEntryTime) and (time >= shortEntryTime + holdDays * 86400000) and strategy.position_size < 0) strategy.close("Short Position") shortEntryTime := na recentlyExitedShort := true if (not useHoldDays and exitLongCondition and strategy.position_size > 0) strategy.close("Long Position") longEntryTime := na recentlyExitedLong := true if (not useHoldDays and exitShortCondition and strategy.position_size < 0) strategy.close("Short Position") shortEntryTime := na recentlyExitedShort := true // Reset recently exited flags on trend change to allow re-entry on a new trend if (trendShiftToBullish1 or trendShiftToBullish2) recentlyExitedLong := false if (trendShiftToBearish1 or trendShiftToBearish2) recentlyExitedShort := false // Conditional Profit and Loss Management if (TPSLCondition == "TP" or TPSLCondition == "Both") // Apply take profit conditions strategy.exit("TakeProfit_Long", "Long Position", limit=close * (1 + takeProfitPerc / 100)) strategy.exit("TakeProfit_Short", "Short Position", limit=close * (1 - takeProfitPerc / 100)) if (TPSLCondition == "SL" or TPSLCondition == "Both") // Apply stop loss conditions strategy.exit("StopLoss_Long", "Long Position", stop=close * (1 - stopLossPerc / 100)) strategy.exit("StopLoss_Short", "Short Position", stop=close * (1 + stopLossPerc / 100)) // Ensure that new entry signals can override the hold days condition if (enterLongCondition and (tradeDirectionChoice == "Long" or tradeDirectionChoice == "Both")) if (strategy.position_size < 0) strategy.close("Short Position") strategy.entry("Long Position", strategy.long) longEntryTime := time recentlyExitedLong := false recentlyExitedShort := false if (enterShortCondition and (tradeDirectionChoice == "Short" or tradeDirectionChoice == "Both")) if (strategy.position_size > 0) strategy.close("Long Position") strategy.entry("Short Position", strategy.short) shortEntryTime := time recentlyExitedShort := false recentlyExitedLong := false