O
A estratégia começa com o cálculo do Canal de Vegas, que é derivado da média móvel simples (SMA) e desvio padrão (STD) dos preços de fechamento durante um comprimento de janela especificado. Este canal ajuda a medir a volatilidade do mercado e forma a base para ajustar o indicador SuperTrend. Em seguida, o Intervalo Verdadeiro Médio (ATR) e o multiplicador ajustado são usados para determinar os limiares superior e inferior do SuperTrend. A tendência do mercado é determinada comparando os preços de fechamento com os limiares do SuperTrend. Os sinais comerciais são gerados apenas quando ambos os indicadores do SuperTrend se alinham na mesma direção do mercado.
A principal vantagem do
Embora a estratégia visa melhorar a precisão da identificação de tendências, ainda há alguns riscos envolvidos. Em primeiro lugar, a estratégia pode gerar sinais de negociação falsos durante períodos de volatilidade extremamente alta ou direção do mercado incerta. Em segundo lugar, a negociação excessivamente frequente pode levar a altos custos de transação, afetando o desempenho geral da estratégia. Para mitigar esses riscos, os comerciantes podem considerar a otimização dos parâmetros da estratégia, como ajustar os períodos ATR, os comprimentos da janela do Canal Vegas e os multiplicadores de SuperTrend para atender às condições específicas do mercado. Além disso, a definição de níveis apropriados de lucro e stop-loss é crucial para controlar as perdas potenciais.
A estratégia de negociação quantitativa de SuperTendência Ajustada à Volatilidade do Canal de Double Vegas pode ser otimizada de várias maneiras. Uma direção de otimização potencial é incorporar indicadores técnicos adicionais, como o Índice de Força Relativa (RSI) ou a Divergência de Convergência da Média Móvel (MACD), para melhorar a confiabilidade da confirmação da tendência. Outra direção de otimização é introduzir mecanismos adaptativos que ajustam dinamicamente os parâmetros da estratégia com base nas condições do mercado. Isso pode ser alcançado usando algoritmos de aprendizado de máquina ou abordagens baseadas em regras. Além disso, a otimização dos períodos de detenção e os níveis de take-profit / stop-loss também podem melhorar o desempenho geral da estratégia.
Em resumo, a
/*backtest start: 2024-05-01 00:00:00 end: 2024-05-31 23:59:59 period: 3h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © PresentTrading // The "Double Vegas SuperTrend Enhanced" strategy uses two SuperTrend indicators with different ATR and Vegas Channel settings // to identify market trends and generate trades. Trades are executed only when both SuperTrends align in the same direction. // The strategy includes configurable take-profit and stop-loss levels, and plots the SuperTrend levels on the chart. //@version=5 strategy("Double Vegas SuperTrend Enhanced - Strategy [presentTrading]", shorttitle="Double Vegas SuperTrend Enhanced - Strategy [presentTrading]", overlay=true, overlay = false, precision=3, commission_value= 0.1, commission_type=strategy.commission.percent, slippage= 1, currency=currency.USD, default_qty_type = strategy.percent_of_equity, default_qty_value = 10, initial_capital= 10000) // Input settings allow the user to customize the strategy's parameters. tradeDirectionChoice = input.string(title="Trade Direction", defval="Both", options=["Long", "Short", "Both"]) // Option to select the trading direction // Settings for the first Vegas SuperTrend atrPeriod1 = input(10, "ATR Period for SuperTrend 1") // Length of the ATR for volatility measurement vegasWindow1 = input(100, "Vegas Window Length 1") // Length of the moving average for the Vegas Channel superTrendMultiplier1 = input(5, "SuperTrend Multiplier Base 1") // Base multiplier for the SuperTrend calculation volatilityAdjustment1 = input.float(5, "Volatility Adjustment Factor 1") // Factor to adjust the SuperTrend sensitivity to the Vegas Channel width // Settings for the second Vegas SuperTrend atrPeriod2 = input(5, "ATR Period for SuperTrend 2") // Length of the ATR for volatility measurement vegasWindow2 = input(200, "Vegas Window Length 2") // Length of the moving average for the Vegas Channel superTrendMultiplier2 = input(7, "SuperTrend Multiplier Base 2") // Base multiplier for the SuperTrend calculation volatilityAdjustment2 = input.float(7, "Volatility Adjustment Factor 2") // Factor to adjust the SuperTrend sensitivity to the Vegas Channel width // Settings for Hold Days and TPSL Conditions useHoldDays = input.bool(true, title="Use Hold Days") holdDays = input.int(5, title="Hold Days", minval=1, maxval=60, step=1) TPSLCondition = input.string("None", "TPSL Condition", options=["TP", "SL", "Both", "None"]) takeProfitPerc = input(30.0, title="Take Profit (%)") stopLossPerc = input(20.0, title="Stop Loss (%)") // Calculate the first Vegas Channel using a simple moving average and standard deviation. vegasMovingAverage1 = ta.sma(close, vegasWindow1) vegasChannelStdDev1 = ta.stdev(close, vegasWindow1) vegasChannelUpper1 = vegasMovingAverage1 + vegasChannelStdDev1 vegasChannelLower1 = vegasMovingAverage1 - vegasChannelStdDev1 // Adjust the first SuperTrend multiplier based on the width of the Vegas Channel. channelVolatilityWidth1 = vegasChannelUpper1 - vegasChannelLower1 adjustedMultiplier1 = superTrendMultiplier1 + volatilityAdjustment1 * (channelVolatilityWidth1 / vegasMovingAverage1) // Calculate the first SuperTrend indicator values. averageTrueRange1 = ta.atr(atrPeriod1) superTrendUpper1 = hlc3 - (adjustedMultiplier1 * averageTrueRange1) superTrendLower1 = hlc3 + (adjustedMultiplier1 * averageTrueRange1) var float superTrendPrevUpper1 = na var float superTrendPrevLower1 = na var int marketTrend1 = 1 // Update SuperTrend values and determine the current trend direction for the first SuperTrend. superTrendPrevUpper1 := nz(superTrendPrevUpper1[1], superTrendUpper1) superTrendPrevLower1 := nz(superTrendPrevLower1[1], superTrendLower1) marketTrend1 := close > superTrendPrevLower1 ? 1 : close < superTrendPrevUpper1 ? -1 : nz(marketTrend1[1], 1) superTrendUpper1 := marketTrend1 == 1 ? math.max(superTrendUpper1, superTrendPrevUpper1) : superTrendUpper1 superTrendLower1 := marketTrend1 == -1 ? math.min(superTrendLower1, superTrendPrevLower1) : superTrendLower1 superTrendPrevUpper1 := superTrendUpper1 superTrendPrevLower1 := superTrendLower1 // Calculate the second Vegas Channel using a simple moving average and standard deviation. vegasMovingAverage2 = ta.sma(close, vegasWindow2) vegasChannelStdDev2 = ta.stdev(close, vegasWindow2) vegasChannelUpper2 = vegasMovingAverage2 + vegasChannelStdDev2 vegasChannelLower2 = vegasMovingAverage2 - vegasChannelStdDev2 // Adjust the second SuperTrend multiplier based on the width of the Vegas Channel. channelVolatilityWidth2 = vegasChannelUpper2 - vegasChannelLower2 adjustedMultiplier2 = superTrendMultiplier2 + volatilityAdjustment2 * (channelVolatilityWidth2 / vegasMovingAverage2) // Calculate the second SuperTrend indicator values. averageTrueRange2 = ta.atr(atrPeriod2) superTrendUpper2 = hlc3 - (adjustedMultiplier2 * averageTrueRange2) superTrendLower2 = hlc3 + (adjustedMultiplier2 * averageTrueRange2) var float superTrendPrevUpper2 = na var float superTrendPrevLower2 = na var int marketTrend2 = 1 // Update SuperTrend values and determine the current trend direction for the second SuperTrend. superTrendPrevUpper2 := nz(superTrendPrevUpper2[1], superTrendUpper2) superTrendPrevLower2 := nz(superTrendPrevLower2[1], superTrendLower2) marketTrend2 := close > superTrendPrevLower2 ? 1 : close < superTrendPrevUpper2 ? -1 : nz(marketTrend2[1], 1) superTrendUpper2 := marketTrend2 == 1 ? math.max(superTrendUpper2, superTrendPrevUpper2) : superTrendUpper2 superTrendLower2 := marketTrend2 == -1 ? math.min(superTrendLower2, superTrendPrevLower2) : superTrendLower2 superTrendPrevUpper2 := superTrendUpper2 superTrendPrevLower2 := superTrendLower2 // Enhanced Visualization // Plot the SuperTrend and Vegas Channel for visual analysis for both lengths. plot(marketTrend1 == 1 ? superTrendUpper1 : na, "SuperTrend Upper 1", color=color.green, linewidth=2) plot(marketTrend1 == -1 ? superTrendLower1 : na, "SuperTrend Lower 1", color=color.red, linewidth=2) plot(marketTrend2 == 1 ? superTrendUpper2 : na, "SuperTrend Upper 2", color=color.rgb(31, 119, 130), linewidth=2) plot(marketTrend2 == -1 ? superTrendLower2 : na, "SuperTrend Lower 2", color=color.rgb(120, 42, 26), linewidth=2) // Detect trend direction changes and plot entry/exit signals for both lengths. trendShiftToBullish1 = marketTrend1 == 1 and marketTrend1[1] == -1 trendShiftToBearish1 = marketTrend1 == -1 and marketTrend1[1] == 1 trendShiftToBullish2 = marketTrend2 == 1 and marketTrend2[1] == -1 trendShiftToBearish2 = marketTrend2 == -1 and marketTrend2[1] == 1 // Define conditions for entering long or short positions, and execute trades based on these conditions for both lengths. enterLongCondition1 = marketTrend1 == 1 enterShortCondition1 = marketTrend1 == -1 enterLongCondition2 = marketTrend2 == 1 enterShortCondition2 = marketTrend2 == -1 // Entry conditions: Both conditions must be met for a trade to be executed. enterLongCondition = enterLongCondition1 and enterLongCondition2 and not na(superTrendPrevUpper1[1]) and not na(superTrendPrevUpper2[1]) enterShortCondition = enterShortCondition1 and enterShortCondition2 and not na(superTrendPrevLower1[1]) and not na(superTrendPrevLower2[1]) // Variables to track entry times var float longEntryTime = na var float shortEntryTime = na // Variables to track whether we have recently exited a trade to prevent re-entry in the same trend var bool recentlyExitedLong = false var bool recentlyExitedShort = false // Check trade direction choice before executing trade entries. if (enterLongCondition and (tradeDirectionChoice == "Long" or tradeDirectionChoice == "Both")) if (strategy.position_size < 0) strategy.close("Short Position") strategy.entry("Long Position", strategy.long) longEntryTime := time recentlyExitedLong := false recentlyExitedShort := false if (enterShortCondition and (tradeDirectionChoice == "Short" or tradeDirectionChoice == "Both")) if (strategy.position_size > 0) strategy.close("Long Position") strategy.entry("Short Position", strategy.short) shortEntryTime := time recentlyExitedShort := false recentlyExitedLong := false // Exit conditions: Either condition being met will trigger an exit. exitLongCondition = marketTrend1 == -1 or marketTrend2 == -1 exitShortCondition = marketTrend1 == 1 or marketTrend2 == 1 // Close positions based on exit conditions or hold days. if (useHoldDays and not na(longEntryTime) and (time >= longEntryTime + holdDays * 86400000) and strategy.position_size > 0) strategy.close("Long Position") longEntryTime := na recentlyExitedLong := true if (useHoldDays and not na(shortEntryTime) and (time >= shortEntryTime + holdDays * 86400000) and strategy.position_size < 0) strategy.close("Short Position") shortEntryTime := na recentlyExitedShort := true if (not useHoldDays and exitLongCondition and strategy.position_size > 0) strategy.close("Long Position") longEntryTime := na recentlyExitedLong := true if (not useHoldDays and exitShortCondition and strategy.position_size < 0) strategy.close("Short Position") shortEntryTime := na recentlyExitedShort := true // Reset recently exited flags on trend change to allow re-entry on a new trend if (trendShiftToBullish1 or trendShiftToBullish2) recentlyExitedLong := false if (trendShiftToBearish1 or trendShiftToBearish2) recentlyExitedShort := false // Conditional Profit and Loss Management if (TPSLCondition == "TP" or TPSLCondition == "Both") // Apply take profit conditions strategy.exit("TakeProfit_Long", "Long Position", limit=close * (1 + takeProfitPerc / 100)) strategy.exit("TakeProfit_Short", "Short Position", limit=close * (1 - takeProfitPerc / 100)) if (TPSLCondition == "SL" or TPSLCondition == "Both") // Apply stop loss conditions strategy.exit("StopLoss_Long", "Long Position", stop=close * (1 - stopLossPerc / 100)) strategy.exit("StopLoss_Short", "Short Position", stop=close * (1 + stopLossPerc / 100)) // Ensure that new entry signals can override the hold days condition if (enterLongCondition and (tradeDirectionChoice == "Long" or tradeDirectionChoice == "Both")) if (strategy.position_size < 0) strategy.close("Short Position") strategy.entry("Long Position", strategy.long) longEntryTime := time recentlyExitedLong := false recentlyExitedShort := false if (enterShortCondition and (tradeDirectionChoice == "Short" or tradeDirectionChoice == "Both")) if (strategy.position_size > 0) strategy.close("Long Position") strategy.entry("Short Position", strategy.short) shortEntryTime := time recentlyExitedShort := false recentlyExitedLong := false