This strategy is an intelligent trading system based on institutional order flow, which predicts potential price reversal points by identifying Order Blocks in the market. The system employs a dynamic position scaling management approach with three-tier targets to optimize position management and maximize returns. The core of the strategy lies in capturing price footprints left by institutional trading behavior through statistical analysis of highs and lows.
The strategy is based on several key elements:
This strategy constructs a complete trading system through institutional order flow analysis and dynamic position management. Through order block identification and multi-level profit-taking settings, it captures opportunities from large capital operations while implementing effective risk control. Traders are advised to carefully consider market conditions and adjust parameters according to specific circumstances in live trading.
/*backtest start: 2019-12-23 08:00:00 end: 2024-12-25 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=6 strategy("Institutional Order Flow Strategy", overlay=true) // Input settings inputSession = input("0930-1600", "Trading Session") // Trading session lookbackPeriod = input.int(20, "Order Block Lookback Period", minval=1) // Lookback for Order Blocks target1Pct = input.float(0.5, "Target 1 (% move)", step=0.1, minval=0.1) // First profit target target2Pct = input.float(1.0, "Target 2 (% move)", step=0.1, minval=0.1) // Second profit target target3Pct = input.float(1.5, "Target 3 (% move)", step=0.1, minval=0.1) // Third profit target // Order Block identification highestHigh = ta.highest(high, lookbackPeriod) lowestLow = ta.lowest(low, lookbackPeriod) orderBlockBuy = ta.valuewhen(close[1] < open[1] and close > open, highestHigh, 0) orderBlockSell = ta.valuewhen(close[1] > open[1] and close < open, lowestLow, 0) // Entry logic inSession = true longCondition = close > orderBlockBuy and inSession shortCondition = close < orderBlockSell and inSession // Strategy entries if longCondition strategy.entry("Long", strategy.long) if shortCondition strategy.entry("Short", strategy.short) // Calculate targets for scaling out longTarget1 = strategy.position_avg_price + strategy.position_avg_price * target1Pct / 100 longTarget2 = strategy.position_avg_price + strategy.position_avg_price * target2Pct / 100 longTarget3 = strategy.position_avg_price + strategy.position_avg_price * target3Pct / 100 shortTarget1 = strategy.position_avg_price - strategy.position_avg_price * target1Pct / 100 shortTarget2 = strategy.position_avg_price - strategy.position_avg_price * target2Pct / 100 shortTarget3 = strategy.position_avg_price - strategy.position_avg_price * target3Pct / 100 // Exit logic with scaling out if strategy.position_size > 0 strategy.exit("Target 1", from_entry="Long", limit=longTarget1, qty_percent=50) strategy.exit("Target 2", from_entry="Long", limit=longTarget2, qty_percent=30) strategy.exit("Target 3", from_entry="Long", limit=longTarget3, qty_percent=20) if strategy.position_size < 0 strategy.exit("Target 1", from_entry="Short", limit=shortTarget1, qty_percent=50) strategy.exit("Target 2", from_entry="Short", limit=shortTarget2, qty_percent=30) strategy.exit("Target 3", from_entry="Short", limit=shortTarget3, qty_percent=20) // Visualize Order Blocks plot(orderBlockBuy, "Order Block Buy", color=color.green, linewidth=2, style=plot.style_line) plot(orderBlockSell, "Order Block Sell", color=color.red, linewidth=2, style=plot.style_line)