This strategy is a quantitative trading system that combines technical analysis indicators with simulated artificial intelligence. It integrates traditional technical indicators such as EMA and RVI, while incorporating simulated AI signals for trading decisions. The strategy also includes a comprehensive money management and risk control system, protecting capital through stop-loss and take-profit mechanisms.
The strategy is built on several core components: 1. Uses 20-day and 200-day Exponential Moving Averages (EMA) to determine market trends 2. Employs Relative Volatility Index (RVI) to evaluate market volatility 3. Incorporates simulated AI signals for decision support 4. Implements fixed capital allocation with 200 units per trade 5. Sets 2% stop-loss and 4% take-profit for risk control
Buy signals are generated when EMA20 crosses above EMA200 with positive RVI; sell signals occur when EMA20 crosses below EMA200 with negative RVI.
The strategy constructs a relatively complete trading system by combining traditional technical analysis with modern quantitative methods. While certain risks exist, continuous optimization and improvement should lead to better trading results. Thorough backtesting is recommended before live trading.
/*backtest start: 2024-10-01 00:00:00 end: 2024-10-31 23:59:59 period: 1h basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Gold Bot with Simulated AI, Viamanchu, EMA20, EMA200, RVI, and Risk Management", overlay=true) // Parámetros de las EMAs ema20 = ta.ema(close, 20) ema200 = ta.ema(close, 200) // Relative Volatility Index (RVI) length = input(14, title="RVI Length") rvi = ta.rma(close - close[1], length) / ta.rma(math.abs(close - close[1]), length) // Simulación de Viamanchu (aleatoria) var int seed = time simulated_vi_manchu_signal = math.random() > 0.5 ? 1 : -1 // 1 para compra, -1 para venta // Configuración de gestión de riesgos capital_total = 2000 // Capital total capital_operado = 200 // Capital asignado a cada operación stop_loss_percent = input.float(2, title="Stop Loss %", minval=0.1, step=0.1) // 2% de stop loss take_profit_percent = input.float(4, title="Take Profit %", minval=0.1, step=0.1) // 4% de take profit // Cálculo de stop loss y take profit en base al precio de entrada stop_loss = close * (1 - stop_loss_percent / 100) take_profit = close * (1 + take_profit_percent / 100) // Condiciones de entrada longCondition = ta.crossover(ema20, ema200) and rvi > 0 and simulated_vi_manchu_signal == 1 shortCondition = ta.crossunder(ema20, ema200) and rvi < 0 and simulated_vi_manchu_signal == -1 // Ejecutar compra if (longCondition) strategy.entry("Compra", strategy.long, stop=stop_loss, limit=take_profit) // Ejecutar venta if (shortCondition) strategy.entry("Venta", strategy.short, stop=stop_loss, limit=take_profit)