Эта стратегия является количественной торговой системой, основанной на динамическом осцилляторе RSI. Исполняя полиномиальное приспособление и анализ временных рядов на индикаторе RSI, она рассчитывает скорость изменения RSI для улавливания рыночного импульса. Стратегия использует передовые математические методы, такие как разложение QR для обработки сигналов и сочетается с системой скользящей средней для принятия торговых решений.
Основой стратегии является осциллятор Delta-RSI, который реализуется в следующих шагах: 1. Сначала вычислить традиционный индикатор RSI в качестве базовых данных 2. Используйте полиномиальное приспособление для сглаживания RSI и уменьшения шума Вычислить временную производную RSI, чтобы получить Delta-RSI, отражающую скорость изменения RSI 4. Сравните Delta-RSI с его скользящей средней для получения торговых сигналов 5. Использовать корневую среднюю квадратную ошибку (RMSE) для оценки и фильтрации качества соответствия
Торговые сигналы могут генерироваться тремя способами: - Пересечение нулевой линии: длинный, когда Delta-RSI становится положительным из отрицательного, короткий, когда становится отрицательным из положительного - Пересечение линии сигнала: длинный/короткий, когда Delta-RSI пересекает его скользящую среднюю - Изменение направления: длинный, когда Delta-RSI начинает расти в отрицательной зоне, короткий, когда начинает падать в положительной зоне
Это полная количественная торговая стратегия с прочной теоретической основой. Благодаря анализу динамических характеристик RSI в сочетании с современными математическими методами обработки сигналов, он может эффективно улавливать рыночные тенденции. Хотя есть некоторые проблемы с чувствительностью параметров и вычислительной сложностью, стратегия имеет хорошую практическую ценность благодаря правильному выбору параметров и улучшениям оптимизации. При применении к живой торговле рекомендуется обращать внимание на контроль рисков, устанавливать разумные размеры позиций и непрерывно отслеживать эффективность стратегии.
/*backtest start: 2024-11-10 00:00:00 end: 2024-12-09 08:00:00 period: 4h basePeriod: 4h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © tbiktag // // Delta-RSI Oscillator Strategy // // A strategy that uses Delta-RSI Oscillator (© tbiktag) as a stand-alone indicator: // https://www.tradingview.com/script/OXQVFTQD-Delta-RSI-Oscillator/ // // Delta-RSI is a smoothed time derivative of the RSI, plotted as a histogram // and serving as a momentum indicator. // // Input parameters: // RSI Length: The timeframe of the RSI that serves as an input to D-RSI. // Length: The length of the lookback frame used for local regression. // Polynomial Order: The order of the local polynomial function used to interpolate the RSI. // Signal Length: The length of a EMA of the D-RSI series that is used as a signal line. // Trade signals are generated based on three optional conditions: // - Zero-crossing: bullish when D-RSI crosses zero from negative to positive values (bearish otherwise) // - Signal Line Crossing: bullish when D-RSI crosses from below to above the signal line (bearish otherwise) // - Direction Change: bullish when D-RSI was negative and starts ascending (bearish otherwise) // // Since D-RSI oscillator is based on polynomial fitting of the RSI curve, there is also an option // to filter trade signal by means of the root mean-square error of the fit (normalized by the sample average). // //@version=5 strategy(title='Delta-RSI Oscillator Strategy-QuangVersion', shorttitle='D-RSI-Q', overlay=true) // ---Subroutines--- matrix_get(_A, _i, _j, _nrows) => // Get the value of the element of an implied 2d matrix //input: // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _i :: integer: row number // _j :: integer: column number // _nrows :: integer: number of rows in the implied 2d matrix array.get(_A, _i + _nrows * _j) matrix_set(_A, _value, _i, _j, _nrows) => // Set a value to the element of an implied 2d matrix //input: // _A :: array, changed on output: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _value :: float: the new value to be set // _i :: integer: row number // _j :: integer: column number // _nrows :: integer: number of rows in the implied 2d matrix array.set(_A, _i + _nrows * _j, _value) transpose(_A, _nrows, _ncolumns) => // Transpose an implied 2d matrix // input: // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _nrows :: integer: number of rows in _A // _ncolumns :: integer: number of columns in _A // output: // _AT :: array: pseudo 2d matrix with implied dimensions: _ncolums x _nrows var _AT = array.new_float(_nrows * _ncolumns, 0) for i = 0 to _nrows - 1 by 1 for j = 0 to _ncolumns - 1 by 1 matrix_set(_AT, matrix_get(_A, i, j, _nrows), j, i, _ncolumns) _AT multiply(_A, _B, _nrowsA, _ncolumnsA, _ncolumnsB) => // Calculate scalar product of two matrices // input: // _A :: array: pseudo 2d matrix // _B :: array: pseudo 2d matrix // _nrowsA :: integer: number of rows in _A // _ncolumnsA :: integer: number of columns in _A // _ncolumnsB :: integer: number of columns in _B // output: // _C:: array: pseudo 2d matrix with implied dimensions _nrowsA x _ncolumnsB var _C = array.new_float(_nrowsA * _ncolumnsB, 0) int _nrowsB = _ncolumnsA float elementC = 0.0 for i = 0 to _nrowsA - 1 by 1 for j = 0 to _ncolumnsB - 1 by 1 elementC := 0 for k = 0 to _ncolumnsA - 1 by 1 elementC += matrix_get(_A, i, k, _nrowsA) * matrix_get(_B, k, j, _nrowsB) elementC matrix_set(_C, elementC, i, j, _nrowsA) _C vnorm(_X, _n) => //Square norm of vector _X with size _n float _norm = 0.0 for i = 0 to _n - 1 by 1 _norm += math.pow(array.get(_X, i), 2) _norm math.sqrt(_norm) qr_diag(_A, _nrows, _ncolumns) => //QR Decomposition with Modified Gram-Schmidt Algorithm (Column-Oriented) // input: // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _nrows :: integer: number of rows in _A // _ncolumns :: integer: number of columns in _A // output: // _Q: unitary matrix, implied dimenstions _nrows x _ncolumns // _R: upper triangular matrix, implied dimansions _ncolumns x _ncolumns var _Q = array.new_float(_nrows * _ncolumns, 0) var _R = array.new_float(_ncolumns * _ncolumns, 0) var _a = array.new_float(_nrows, 0) var _q = array.new_float(_nrows, 0) float _r = 0.0 float _aux = 0.0 //get first column of _A and its norm: for i = 0 to _nrows - 1 by 1 array.set(_a, i, matrix_get(_A, i, 0, _nrows)) _r := vnorm(_a, _nrows) //assign first diagonal element of R and first column of Q matrix_set(_R, _r, 0, 0, _ncolumns) for i = 0 to _nrows - 1 by 1 matrix_set(_Q, array.get(_a, i) / _r, i, 0, _nrows) if _ncolumns != 1 //repeat for the rest of the columns for k = 1 to _ncolumns - 1 by 1 for i = 0 to _nrows - 1 by 1 array.set(_a, i, matrix_get(_A, i, k, _nrows)) for j = 0 to k - 1 by 1 //get R_jk as scalar product of Q_j column and A_k column: _r := 0 for i = 0 to _nrows - 1 by 1 _r += matrix_get(_Q, i, j, _nrows) * array.get(_a, i) _r matrix_set(_R, _r, j, k, _ncolumns) //update vector _a for i = 0 to _nrows - 1 by 1 _aux := array.get(_a, i) - _r * matrix_get(_Q, i, j, _nrows) array.set(_a, i, _aux) //get diagonal R_kk and Q_k column _r := vnorm(_a, _nrows) matrix_set(_R, _r, k, k, _ncolumns) for i = 0 to _nrows - 1 by 1 matrix_set(_Q, array.get(_a, i) / _r, i, k, _nrows) [_Q, _R] pinv(_A, _nrows, _ncolumns) => //Pseudoinverse of matrix _A calculated using QR decomposition // Input: // _A:: array: implied as a (_nrows x _ncolumns) matrix _A = [[column_0],[column_1],...,[column_(_ncolumns-1)]] // Output: // _Ainv:: array implied as a (_ncolumns x _nrows) matrix _A = [[row_0],[row_1],...,[row_(_nrows-1)]] // ---- // First find the QR factorization of A: A = QR, // where R is upper triangular matrix. // Then _Ainv = R^-1*Q^T. // ---- [_Q, _R] = qr_diag(_A, _nrows, _ncolumns) _QT = transpose(_Q, _nrows, _ncolumns) // Calculate Rinv: var _Rinv = array.new_float(_ncolumns * _ncolumns, 0) float _r = 0.0 matrix_set(_Rinv, 1 / matrix_get(_R, 0, 0, _ncolumns), 0, 0, _ncolumns) if _ncolumns != 1 for j = 1 to _ncolumns - 1 by 1 for i = 0 to j - 1 by 1 _r := 0.0 for k = i to j - 1 by 1 _r += matrix_get(_Rinv, i, k, _ncolumns) * matrix_get(_R, k, j, _ncolumns) _r matrix_set(_Rinv, _r, i, j, _ncolumns) for k = 0 to j - 1 by 1 matrix_set(_Rinv, -matrix_get(_Rinv, k, j, _ncolumns) / matrix_get(_R, j, j, _ncolumns), k, j, _ncolumns) matrix_set(_Rinv, 1 / matrix_get(_R, j, j, _ncolumns), j, j, _ncolumns) // _Ainv = multiply(_Rinv, _QT, _ncolumns, _ncolumns, _nrows) _Ainv norm_rmse(_x, _xhat) => // Root Mean Square Error normalized to the sample mean // _x. :: array float, original data // _xhat :: array float, model estimate // output // _nrmse:: float float _nrmse = 0.0 if array.size(_x) != array.size(_xhat) _nrmse := na _nrmse else int _N = array.size(_x) float _mse = 0.0 for i = 0 to _N - 1 by 1 _mse += math.pow(array.get(_x, i) - array.get(_xhat, i), 2) / _N _mse _xmean = array.sum(_x) / _N _nrmse := math.sqrt(_mse) / _xmean _nrmse _nrmse diff(_src, _window, _degree) => // Polynomial differentiator // input: // _src:: input series // _window:: integer: wigth of the moving lookback window // _degree:: integer: degree of fitting polynomial // output: // _diff :: series: time derivative // _nrmse:: float: normalized root mean square error // // Vandermonde matrix with implied dimensions (window x degree+1) // Linear form: J = [ [z]^0, [z]^1, ... [z]^degree], with z = [ (1-window)/2 to (window-1)/2 ] var _J = array.new_float(_window * (_degree + 1), 0) for i = 0 to _window - 1 by 1 for j = 0 to _degree by 1 matrix_set(_J, math.pow(i, j), i, j, _window) // Vector of raw datapoints: var _Y_raw = array.new_float(_window, na) for j = 0 to _window - 1 by 1 array.set(_Y_raw, j, _src[_window - 1 - j]) // Calculate polynomial coefficients which minimize the loss function _C = pinv(_J, _window, _degree + 1) _a_coef = multiply(_C, _Y_raw, _degree + 1, _window, 1) // For first derivative, approximate the last point (i.e. z=window-1) by float _diff = 0.0 for i = 1 to _degree by 1 _diff += i * array.get(_a_coef, i) * math.pow(_window - 1, i - 1) _diff // Calculates data estimate (needed for rmse) _Y_hat = multiply(_J, _a_coef, _window, _degree + 1, 1) float _nrmse = norm_rmse(_Y_raw, _Y_hat) [_diff, _nrmse] /// --- main --- degree = input.int(title='Polynomial Order', group='Model Parameters:', inline='linepar1', defval=2, minval=1) rsi_l = input.int(title='RSI Length', group='Model Parameters:', inline='linepar1', defval=21, minval=1, tooltip='The period length of RSI that is used as input.') window = input.int(title='Length ( > Order)', group='Model Parameters:', inline='linepar2', defval=21, minval=2) signalLength = input.int(title='Signal Length', group='Model Parameters:', inline='linepar2', defval=9, tooltip='The signal line is a EMA of the D-RSI time series.') islong = input.bool(title='Buy', group='Show Signals:', inline='lineent', defval=true) isshort = input.bool(title='Sell', group='Show Signals:', inline='lineent', defval=true) showendlabels = input.bool(title='Exit', group='Show Signals:', inline='lineent', defval=true) buycond = input.string(title='Buy', group='Entry and Exit Conditions:', inline='linecond', defval='Zero-Crossing', options=['Zero-Crossing', 'Signal Line Crossing', 'Direction Change']) sellcond = input.string(title='Sell', group='Entry and Exit Conditions:', inline='linecond', defval='Zero-Crossing', options=['Zero-Crossing', 'Signal Line Crossing', 'Direction Change']) endcond = input.string(title='Exit', group='Entry and Exit Conditions:', inline='linecond', defval='Zero-Crossing', options=['Zero-Crossing', 'Signal Line Crossing', 'Direction Change']) usenrmse = input.bool(title='', group='Filter by Means of Root-Mean-Square Error of RSI Fitting:', inline='linermse', defval=false) rmse_thrs = input.float(title='RSI fitting Error Threshold, %', group='Filter by Means of Root-Mean-Square Error of RSI Fitting:', inline='linermse', defval=10, minval=0.0) / 100 src = ta.rsi(close, rsi_l) [drsi, nrmse] = diff(src, window, degree) signalline = ta.ema(drsi, signalLength) // Conditions and filters filter_rmse = usenrmse ? nrmse < rmse_thrs : true dirchangeup = drsi > drsi[1] and drsi[1] < drsi[2] and drsi[1] < 0.0 dirchangedw = drsi < drsi[1] and drsi[1] > drsi[2] and drsi[1] > 0.0 crossup = ta.crossover(drsi, 0.0) crossdw = ta.crossunder(drsi, 0.0) crosssignalup = ta.crossover(drsi, signalline) crosssignaldw = ta.crossunder(drsi, signalline) //Signals golong = (buycond == 'Direction Change' ? dirchangeup : buycond == 'Zero-Crossing' ? crossup : crosssignalup) and filter_rmse goshort = (sellcond == 'Direction Change' ? dirchangedw : sellcond == 'Zero-Crossing' ? crossdw : crosssignaldw) and filter_rmse endlong = (endcond == 'Direction Change' ? dirchangedw : endcond == 'Zero-Crossing' ? crossdw : crosssignaldw) and filter_rmse endshort = (endcond == 'Direction Change' ? dirchangeup : endcond == 'Zero-Crossing' ? crossup : crosssignalup) and filter_rmse plotshape(golong and islong ? low : na, location=location.belowbar, style=shape.labelup, color=color.new(#2E7C13, 0), size=size.small, title='Buy') plotshape(goshort and isshort ? high : na, location=location.abovebar, style=shape.labeldown, color=color.new(#BF217C, 0), size=size.small, title='Sell') plotshape(showendlabels and endlong and islong ? high : na, location=location.abovebar, style=shape.xcross, color=color.new(#2E7C13, 0), size=size.tiny, title='Exit Long') plotshape(showendlabels and endshort and isshort ? low : na, location=location.belowbar, style=shape.xcross, color=color.new(#BF217C, 0), size=size.tiny, title='Exit Short') alertcondition(golong, title='Long Signal', message='D-RSI: Long Signal') alertcondition(goshort, title='Short Signal', message='D-RSI: Short Signal') alertcondition(endlong, title='Exit Long Signal', message='D-RSI: Exit Long') alertcondition(endshort, title='Exit Short Signal', message='D-RSI: Exit Short') strategy.entry('long', strategy.long, when=golong and islong) strategy.entry('short', strategy.short, when=goshort and isshort) strategy.close('long', when=endlong and islong) strategy.close('short', when=endshort and isshort)