This strategy is a trading strategy based on the Stochastic Slow Oscillator, combined with Moving Average, Relative Strength Index (RSI), and Artificial Intelligence (AI) techniques. The strategy determines buy and sell signals by analyzing the crossover signals of the Stochastic Slow Oscillator, considering the position of the price relative to the 200-day moving average, and incorporating signals generated by an AI model. The strategy also sets take-profit and stop-loss levels to manage risk.
This strategy combines the Stochastic Slow Oscillator, Moving Average, Relative Strength Index, and AI techniques to construct a multi-factor trading strategy. The strategy utilizes the Stochastic Oscillator to capture overbought and oversold signals while using a trend filter and intelligent signal generation to improve its robustness and adaptability. Although the strategy has certain risks, such as indicator failure and model uncertainty, these can be mitigated by optimizing indicator parameters, enhancing the AI model, implementing dynamic risk control measures, and incorporating additional modules for position sizing and money management.
/*backtest start: 2024-03-12 00:00:00 end: 2024-04-11 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Stochastic Slow Strategy with More Entries and AI", overlay=true) length = input.int(30, minval=1) OverBought = input(40) OverSold = input(19) smoothK = input.int(18, minval=1) smoothD = input.int(7, minval=1) minKValue = input(12, title="Minimum K Value") // Stochastic calculations k = ta.sma(ta.stoch(close, high, low, length), smoothK) d = ta.sma(k, smoothD) co = ta.crossover(k, d) cu = ta.crossunder(k, d) // Trend filter (200-period simple moving average) ema200 = ta.sma(close, 200) // Define la función para calcular la señal de la red neuronal recurrente rnn_signal(price_series) => // Aquí implementa tu modelo de red neuronal recurrente para generar la señal // Puedes usar bibliotecas externas o implementar tu propio modelo aquí // Ejemplo de señal aleatoria signal = ta.rsi(price_series, 14) > 50 ? 1 : -1 // Devuelve la señal generada por la red neuronal recurrente signal // Calcula la señal utilizando la función definida anteriormente ai_signal = rnn_signal(close) // Entry conditions longCondition = ta.crossover(close, ema200) and k < OverSold and k > minKValue and ai_signal == 1 shortCondition = ta.crossunder(close, ema200) and k > OverBought and k > minKValue and ai_signal == -1 if (not na(k) and not na(d)) if (co and k < OverSold and k > minKValue) strategy.entry("LONG", strategy.long, comment="LONG") strategy.exit("ExitLong", "LONG", profit = close * 500, loss = close * 200) if (cu and k > OverBought and k > minKValue) strategy.entry("SHORT", strategy.short, comment="SHORT") strategy.exit("ExitShort", "SHORT", profit = close * 500, loss = close * 200) if (longCondition) strategy.entry("LongEntry", strategy.long, comment="LongEntry") strategy.exit("ExitLongEntry", "LongEntry", profit = close * 500, loss = close * 200) if (shortCondition) strategy.entry("ShortEntry", strategy.short, comment="ShortEntry") strategy.exit("ExitShortEntry", "ShortEntry", profit = close * 500, loss = close * 200) // Plotting plot(ema200, color=color.blue, title="200 SMA")