This strategy is an adaptive trading system that combines multiple technical analysis indicators and switches between different trading strategies by dynamically identifying market conditions. The system is primarily based on Moving Average (MA), Bollinger Bands (BB), and Relative Strength Index (RSI), automatically selecting the most suitable trading method according to market trends and range oscillation characteristics. The strategy implements differentiated risk management solutions for trending and ranging markets by setting different take-profit and stop-loss parameters.
The strategy uses 50-period and 20-period moving averages to determine market trends, combined with Bollinger Bands and RSI to identify overbought and oversold areas. In trending markets, the system mainly trades based on price relationship with the slow moving average and crossovers between fast and slow lines; in ranging markets, it primarily trades on Bollinger Bands breakouts and RSI overbought/oversold signals. The system automatically adjusts take-profit levels according to market conditions, using 6% for trending markets and 4% for ranging markets, with a uniform 2% stop-loss for risk control.
This strategy builds an adaptive trading system capable of adapting to different market environments by combining multiple classic technical indicators. While maintaining operational simplicity, the system achieves dynamic market state identification and automatic trading strategy switching, demonstrating strong practicality. Through differentiated take-profit and stop-loss settings, the strategy maintains good profitability while controlling risks. Strategy stability and reliability can be further enhanced by introducing more technical indicators and optimizing parameter adjustment mechanisms.
/*backtest start: 2024-01-17 00:00:00 end: 2025-01-16 00:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT","balance":49999}] */ //@version=6 strategy("Supply & Demand Test 1 - Enhanced", overlay=true) // Inputs ma_length = input.int(50, title="50-period Moving Average Length", minval=1) ma_length_fast = input.int(20, title="20-period Moving Average Length", minval=1) bb_length = input.int(20, title="Bollinger Bands Length", minval=1) bb_std_dev = input.float(2.0, title="Bollinger Bands Std Dev", step=0.1) rsi_length = input.int(14, title="RSI Length", minval=1) stop_loss_percent = input.float(0.02, title="Stop Loss Percent", step=0.001, minval=0.001) take_profit_trend = input.float(0.06, title="Take Profit Percent (Trend)", step=0.001, minval=0.001) take_profit_range = input.float(0.04, title="Take Profit Percent (Range)", step=0.001, minval=0.001) // Moving Averages ma_slow = ta.sma(close, ma_length) ma_fast = ta.sma(close, ma_length_fast) // Bollinger Bands bb_basis = ta.sma(close, bb_length) bb_dev = ta.stdev(close, bb_length) bb_upper = bb_basis + bb_std_dev * bb_dev bb_lower = bb_basis - bb_std_dev * bb_dev // RSI rsi = ta.rsi(close, rsi_length) // Market Conditions is_trending_up = close > ma_slow is_trending_down = close < ma_slow is_range_bound = not (is_trending_up or is_trending_down) // Entry Conditions long_trend_entry = is_trending_up and close >= ma_slow * 1.02 short_trend_entry = is_trending_down and close <= ma_slow * 0.98 long_ma_crossover = ta.crossover(ma_fast, ma_slow) short_ma_crossover = ta.crossunder(ma_fast, ma_slow) long_range_entry = is_range_bound and close <= bb_lower * 0.97 short_range_entry = is_range_bound and close >= bb_upper * 1.03 long_rsi_entry = is_range_bound and rsi < 30 short_rsi_entry = is_range_bound and rsi > 70 // Entry and Exit Logic if long_trend_entry strategy.entry("Long Trend", strategy.long) strategy.exit("Exit Long Trend", from_entry="Long Trend", stop=close * (1 - stop_loss_percent), limit=close * (1 + take_profit_trend)) alert("Entered Long Trend", alert.freq_once_per_bar) if short_trend_entry strategy.entry("Short Trend", strategy.short) strategy.exit("Exit Short Trend", from_entry="Short Trend", stop=close * (1 + stop_loss_percent), limit=close * (1 - take_profit_trend)) alert("Entered Short Trend", alert.freq_once_per_bar) if long_ma_crossover strategy.entry("Long MA Crossover", strategy.long) strategy.exit("Exit Long MA Crossover", from_entry="Long MA Crossover", stop=close * (1 - stop_loss_percent), limit=close * (1 + take_profit_trend)) alert("Entered Long MA Crossover", alert.freq_once_per_bar) if short_ma_crossover strategy.entry("Short MA Crossover", strategy.short) strategy.exit("Exit Short MA Crossover", from_entry="Short MA Crossover", stop=close * (1 + stop_loss_percent), limit=close * (1 - take_profit_trend)) alert("Entered Short MA Crossover", alert.freq_once_per_bar) if long_range_entry strategy.entry("Long Range", strategy.long) strategy.exit("Exit Long Range", from_entry="Long Range", stop=close * (1 - stop_loss_percent), limit=close * (1 + take_profit_range)) alert("Entered Long Range", alert.freq_once_per_bar) if short_range_entry strategy.entry("Short Range", strategy.short) strategy.exit("Exit Short Range", from_entry="Short Range", stop=close * (1 + stop_loss_percent), limit=close * (1 - take_profit_range)) alert("Entered Short Range", alert.freq_once_per_bar) if long_rsi_entry strategy.entry("Long RSI", strategy.long) strategy.exit("Exit Long RSI", from_entry="Long RSI", stop=close * (1 - stop_loss_percent), limit=close * (1 + take_profit_range)) alert("Entered Long RSI", alert.freq_once_per_bar) if short_rsi_entry strategy.entry("Short RSI", strategy.short) strategy.exit("Exit Short RSI", from_entry="Short RSI", stop=close * (1 + stop_loss_percent), limit=close * (1 - take_profit_range)) alert("Entered Short RSI", alert.freq_once_per_bar) // Plotting plot(ma_slow, color=color.blue, title="50-period MA") plot(ma_fast, color=color.orange, title="20-period MA") plot(bb_upper, color=color.red, title="Bollinger Upper") plot(bb_lower, color=color.green, title="Bollinger Lower") plot(bb_basis, color=color.gray, title="Bollinger Basis") hline(70, "Overbought (RSI)", color=color.red, linestyle=hline.style_dotted) hline(30, "Oversold (RSI)", color=color.green, linestyle=hline.style_dotted)