Cette stratégie est une approche d'investissement intelligente qui combine la moyenne des coûts en dollars (DCA) avec l'indicateur technique des bandes de Bollinger. Elle construit systématiquement des positions pendant les baisses de prix en tirant parti des principes de réversion moyenne.
La stratégie est basée sur trois piliers fondamentaux: 1) la moyenne du coût du dollar, qui réduit le risque de temps grâce à des investissements réguliers à montant fixe; 2) la théorie de la réversion moyenne, qui suppose que les prix reviendront éventuellement à leur moyenne historique; 3) l'indicateur des bandes de Bollinger pour identifier les zones de surachat et de survente. Les signaux d'achat sont déclenchés lorsque le prix dépasse la bande inférieure, la quantité d'achat étant déterminée en divisant le montant de l'investissement par le prix actuel.
Il s'agit d'une stratégie robuste qui combine l'analyse technique avec des méthodes d'investissement systématiques. Elle utilise les bandes de Bollinger pour identifier les opportunités de survente tout en mettant en œuvre la moyenne dollar-coût pour réduire les risques. La clé du succès réside dans des paramètres appropriés et une discipline d'exécution stricte. Alors que les risques existent, l'optimisation continue et la gestion des risques peuvent améliorer la stabilité de la stratégie.
/*backtest start: 2019-12-23 08:00:00 end: 2024-12-10 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("DCA Strategy with Mean Reversion and Bollinger Band", overlay=true) // Define the strategy name and set overlay=true to display on the main chart // Inputs for investment amount and dates investment_amount = input.float(10000, title="Investment Amount (USD)", tooltip="Amount to be invested in each buy order (in USD)") // Amount to invest in each buy order open_date = input(timestamp("2024-01-01 00:00:00"), title="Open All Positions On", tooltip="Date when to start opening positions for DCA strategy") // Date to start opening positions close_date = input(timestamp("2024-08-04 00:00:00"), title="Close All Positions On", tooltip="Date when to close all open positions for DCA strategy") // Date to close all positions // Bollinger Band parameters source = input.source(title="Source", defval=close, group="Bollinger Band Parameter", tooltip="The price source to calculate the Bollinger Bands (e.g., closing price)") // Source of price for calculating Bollinger Bands (e.g., closing price) length = input.int(200, minval=1, title='Period', group="Bollinger Band Parameter", tooltip="Period for the Bollinger Band calculation (e.g., 200-period moving average)") // Period for calculating the Bollinger Bands (e.g., 200-period moving average) mult = input.float(2, minval=0.1, maxval=50, step=0.1, title='Standard Deviation', group="Bollinger Band Parameter", tooltip="Multiplier for the standard deviation to define the upper and lower bands") // Multiplier for the standard deviation to calculate the upper and lower bands // Timeframe selection for Bollinger Bands tf = input.timeframe(title="Bollinger Band Timeframe", defval="240", group="Bollinger Band Parameter", tooltip="The timeframe used to calculate the Bollinger Bands (e.g., 4-hour chart)") // Timeframe for calculating the Bollinger Bands (e.g., 4-hour chart) // Calculate BB for the chosen timeframe using security [basis, bb_dev] = request.security(syminfo.tickerid, tf, [ta.ema(source, length), mult * ta.stdev(source, length)]) // Calculate Basis (EMA) and standard deviation for the chosen timeframe upper = basis + bb_dev // Calculate the Upper Band by adding the standard deviation to the Basis lower = basis - bb_dev // Calculate the Lower Band by subtracting the standard deviation from the Basis // Plot Bollinger Bands plot(basis, color=color.red, title="Middle Band (SMA)") // Plot the middle band (Basis, EMA) in red plot(upper, color=color.blue, title="Upper Band") // Plot the Upper Band in blue plot(lower, color=color.blue, title="Lower Band") // Plot the Lower Band in blue fill(plot(upper), plot(lower), color=color.blue, transp=90) // Fill the area between Upper and Lower Bands with blue color at 90% transparency // Define buy condition based on Bollinger Band buy_condition = ta.crossunder(source, lower) // Define the buy condition when the price crosses under the Lower Band (Mean Reversion strategy) // Execute buy orders on the Bollinger Band Mean Reversion condition if (buy_condition ) // Check if the buy condition is true and time is within the open and close date range strategy.order("DCA Buy", strategy.long, qty=investment_amount / close) // Execute the buy order with the specified investment amount // Close all positions on the specified date if (time >= close_date) // Check if the current time is after the close date strategy.close_all() // Close all open positions // Track the background color state var color bgColor = na // Initialize a variable to store the background color (set to 'na' initially) // Update background color based on conditions if close > upper // If the close price is above the Upper Band bgColor := color.red // Set the background color to red else if close < lower // If the close price is below the Lower Band bgColor := color.green // Set the background color to green // Apply the background color bgcolor(bgColor, transp=90, title="Background Color Based on Bollinger Bands") // Set the background color based on the determined condition with 90% transparency // Postscript: // 1. Once you have set the "Investment Amount (USD)" in the input box, proceed with additional configuration. // Go to "Properties" and adjust the "Initial Capital" value by calculating it as "Total Closed Trades" multiplied by "Investment Amount (USD)" // to ensure the backtest results are aligned correctly with the actual investment values. // // Example: // Investment Amount (USD) = 100 USD // Total Closed Trades = 10 // Initial Capital = 10 x 100 = 1,000 USD // Investment Amount (USD) = 200 USD // Total Closed Trades = 24 // Initial Capital = 24 x 200 = 4,800 USD