Strategi ini adalah sistem perdagangan komprehensif yang menggabungkan algoritma pembelajaran mesin K-Nearest Neighbors (KNN), pengenalan corak lilin, dan analisis jumlah. Melalui kaedah analisis berbilang dimensi termasuk saluran purata bergerak, pengesahan ambang jumlah, dan statistik kebarangkalian, strategi membentuk kerangka analisis tiga dimensi untuk menangkap peluang perdagangan yang berpotensi.
Logik teras strategi ini dibina di atas beberapa elemen utama: 1. Menggunakan purata bergerak mudah (SMA) dan penyimpangan standard untuk membina saluran harga untuk mengenal pasti kawasan overbought dan oversold 2. Mengenali sembilan corak lilin klasik melalui keadaan yang ditakrifkan secara programatik, termasuk corak Hammer, Shooting Star, Engulfing, dll. 3. Menggabungkan algoritma KNN untuk belajar dari pergerakan harga sejarah dan meramalkan hala tuju harga masa depan 4. Menggunakan jumlah sebagai penunjuk pengesahan isyarat, memerlukan jumlah untuk berada di atas ambang yang ditetapkan apabila isyarat mencetuskan 5. Pengiraan pengedaran kebarangkalian untuk pergerakan ke atas dan ke bawah sebagai salah satu keadaan penapisan isyarat
Strategi ini membina sistem perdagangan yang kukuh dengan menggabungkan analisis teknikal tradisional dengan kaedah pembelajaran mesin moden. Rangka kerja analisis berdimensi dan mekanisme pengesahan isyarat yang ketat menyediakan asas yang boleh dipercayai untuk keputusan perdagangan. Melalui pengoptimuman dan kawalan risiko yang berterusan, strategi ini dijangka mengekalkan prestasi yang stabil di bawah pelbagai keadaan pasaran.
/*backtest start: 2024-01-17 00:00:00 end: 2025-01-16 00:00:00 period: 2d basePeriod: 2d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT","balance":49999}] */ //@version=6 strategy("Candle Pattern Analyzer with Volume", overlay=true) // Input parameters length = input.int(20, "Channel Length", minval=1) mult = input.float(2.0, "Volatility Multiplier", minval=0.1) candleLength = input.int(5, "Candle Length", minval=1) k = input.int(5, "KNN Neighbors", minval=1) volumeThreshold = input.int(100000, "Volume Threshold", minval=1) // Calculate channel basis = ta.sma(close, length) dev = mult * ta.stdev(close, length) upper = basis + dev lower = basis - dev // Plot channel plot(basis, color=color.blue) plot(upper, color=color.green) plot(lower, color=color.red) // Identify candle patterns isBullish = close > open isBearish = close < open // Pre-calculate SMAs smaLow = ta.sma(low, candleLength) smaHigh = ta.sma(high, candleLength) smaClose = ta.sma(close, candleLength) // Hammer pattern isHammer = isBullish and low < smaLow and close > smaClose and (close - low) / (high - low) > 0.6 and low < low[1] // Shooting Star pattern isShootingStar = isBearish and high > smaHigh and close < smaClose and (high - close) / (high - low) > 0.6 and high > high[1] // Inverse Hammer pattern isInverseHammer = isBullish and high > smaHigh and close < smaClose and (high - close) / (high - low) > 0.6 and high > high[1] // Bullish Engulfing pattern isBullishEngulfing = isBullish and close > high[1] and open < low[1] // Bearish Engulfing pattern isBearishEngulfing = isBearish and close < low[1] and open > high[1] // Morning Star pattern isMorningStar = isBullish and close[2] < open[2] and close[1] < open[1] and close > open[1] // Evening Star pattern isEveningStar = isBearish and close[2] > open[2] and close[1] > open[1] and close < open[1] // Three Black Crows pattern isThreeBlackCrows = isBearish and close < close[1] and close[1] < close[2] and close[2] < close[3] // Three White Soldiers pattern isThreeWhiteSoldiers = isBullish and close > close[1] and close[1] > close[2] and close[2] > close[3] // Compare previous candles prevCandleUp = close[1] > open[1] prevCandleDown = close[1] < open[1] // Calculate probability probUp = ta.sma(close > open ? 1 : 0, candleLength) / candleLength probDown = ta.sma(close < open ? 1 : 0, candleLength) / candleLength // Generate signals buySignal = isHammer and prevCandleDown and probUp > probDown and volume > volumeThreshold sellSignal = isShootingStar and prevCandleUp and probDown > probUp and volume > volumeThreshold // Highlight patterns color candleColor = na if (isHammer) candleColor := color.green label.new(bar_index, high, "Hammer", color=color.green, style=label.style_label_up) else if (isShootingStar) candleColor := color.red label.new(bar_index, low, "Shooting Star", color=color.red, style=label.style_label_down) else if (isInverseHammer) candleColor := color.blue label.new(bar_index, high, "Inverse Hammer", color=color.blue, style=label.style_label_up) else if (isBullishEngulfing) candleColor := color.yellow label.new(bar_index, high, "Bullish Engulfing", color=color.yellow, style=label.style_label_up) else if (isBearishEngulfing) candleColor := color.purple label.new(bar_index, low, "Bearish Engulfing", color=color.purple, style=label.style_label_down) else if (isMorningStar) candleColor := color.orange label.new(bar_index, high, "Morning Star", color=color.orange, style=label.style_label_up) else if (isEveningStar) candleColor := color.new(color.red, 80) label.new(bar_index, low, "Evening Star", color=color.new(color.red, 80), style=label.style_label_down) else if (isThreeBlackCrows) candleColor := color.black label.new(bar_index, low, "Three Black Crows", color=color.black, style=label.style_label_down) else if (isThreeWhiteSoldiers) candleColor := color.white label.new(bar_index, high, "Three White Soldiers", color=color.white, style=label.style_label_up) // Plot candles barcolor(candleColor) // KNN algorithm var float[] knnData = array.new_float(k, na) var float[] knnLabels = array.new_float(k, na) // Create an array to store KNN labels array.set(knnLabels, 0, 1.0) // Label for "up" movement // Shift KNN dataset to make room for new data point for i = 1 to k-1 array.set(knnData, i, array.get(knnData, i-1)) array.set(knnLabels, i, array.get(knnLabels, i-1)) // Predict next movement using KNN algorithm float prediction = 0.0 for i = 0 to k-1 float distance = math.abs(close - array.get(knnData, i)) prediction += array.get(knnLabels, i) / distance prediction /= k // Plot prediction // line.new(bar_index, close, bar_index + 1, prediction, color=color.purple) // Plot resistance and support lines float resistance = ta.sma(high, length) float support = ta.sma(low, length) // line.new(bar_index, resistance, bar_index + 1, resistance, color=color.green, style=line.style_dashed) // line.new(bar_index, support, bar_index + 1, support, color=color.red, style=line.style_dashed) // Plot buy and sell signals with prices if (buySignal) // label.new(bar_index, low, "Buy at " + str.tostring(low), color=color.green, style=label.style_label_up) strategy.entry("Buy", strategy.long, comment="Buy at " + str.tostring(low)) if (sellSignal) // label.new(bar_index, high, "Sell at " + str.tostring(high), color=color.red, style=label.style_label_down) strategy.entry("Sell", strategy.short, comment="Sell at " + str.tostring(high)) // Create alerts alertcondition(buySignal, title="Buy Signal", message="Buy signal generated!") alertcondition(sellSignal, title="Sell Signal", message="Sell signal generated!")